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PROBABILITY MODELS FOR
...... THEATER NUCLEAR WARFARE SUMMARY:5".CA " CAA-RP-89-3

ABSTRACT. This paper proposes specific probabilistic approaches to address several major
problems associated with the representation of tactical nuclear warfare at the theater level.

The first problem is identifying the locations of small units (potential nuclear targets) such as
companies or battalions within theater-level conventional scenarios or model outputs. Current
approaches to identifying these small unit locations fail to take into account the variability that
might be realized in any specific battle. A two-dimensional multivariate model is proposed to
describe uncertainty about the precise location of the potential targets. As targets may be
aggregated and/or precluded from fires due to collateral damage and other constraints, the
multivariate location model is suitably modified to indicate the two-dimensional distributions of
possible wcapon aimpoint locations. The research also incorporates probability models of target
acquisition and target location error.

The second major problem lies in the interface between theater-level nuclear analyses and
conventional battle expected value simulations. An expected value model demands a single input to
represent the effect of a nuclear exchange. However, a theater-le-.'el nuclear exchange may generate
many different outcomes which will have significantly different effects. We use the probability
models to estimate sets of possible nuclear exchange outcomes, which can be partitioned into sets
which we expect to have significantly different effects on the conventional battle. The expected value
simulation can be run for each set of outcomes, to capture the variability inherent in the nuclear
exchange and predict its effect upon the conventional battle.

The probability models described in this paper may be used as a research tool to estimate the
sensitivity cf exchange outcomes to various data and assumptions, as a surrogate for detailed.
complex simulation models; or as an estimator of the sample space of all possible outcomes of a
theater nuclear exchange.

THE RESEARCH SPONSOR was the Director, US Army Concepts Analysis Agency (CAA).

THE OBJECTIVE OF THE RESEARCH was to develop a probability model for theater-level
tactical nuclear warfare based on a probabilistic force array.

THE MAIN ASSUMPTIONS used in this research were:

(1) The uncertainty about the actual location of units on some future battlefield can be
described using multinormal probability distributions, dependent between all X coordinates and
between all Y coordinates for all units, with the X coordinates assumed to be mutually independent
of all Y coordinates.

(2) Aggregation and bonus effects can be evaluated for pairs of units only.

(3) Various mixing parameters can be approximated as constants.

(4) DGZ shifts due to preclusion can be modeled from the single preclusion area most likely to
cause a shift.

(5) Distributions can be evaluated using standard approximations.
V
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(6) Assumptions standard in nuclear effects models relating to the nuclear weapon and the
target can be used. These assumptions are detailed within the text.

(7) The unit defeat probabilities can be evaluated independently.

THE BASIC APPROACH used in this research was to use multivariate probability distributions to
describe uncertainty about the precise location of the potential targets. As targets may be
aggregated and/or precluded from fires due to collateral damage and other constraints, the
multivariate location model is suitably modified to indicate the two-dimensional distributions of
possible weapon aimpoint locations. The research also incorporates probability models of target
acquisition and target location error. From these distributions, it is possible to determine the
probability that a targetable subunit (such as a company or battery) can be defeated and the space
of all possible outcomes of a tactical nuclear exchange (in terms of the defeat or failure to defeat a
unit) can be specified.

THE PRINCIPAL FINDING of the research is that is is possible to develop an analytic probability
model of a theater-level tactical nuclear exchange.

THE RESEARCH WAS PERFORMED BY MAJ Mark A. Youngren.

COMMENTS AND QUESTIONS may be sent to the Director, US Army Concepts Analysis Agency.
ATTN: CSCA-RQR, 8120 Woodmont Avenue, Bethesda, MD 20814-2797.
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CHAPTER 1

INTRODUCTION

Section 1. BACKGROUND

Modeling Nuclear Warfare at the Theater Level

The US Army Concepts Analysis Agency (CAA) has the responsibility of conducting analysis of

issues of concern to the Department of the Army at the theater level. One such issue is the possible

employment of tactical nuclear weapons - that is, nuclear weapons employed by combined forces

against military targets within a theater.

The number of nuclear weapons available for employment within a theater is relatively small.

yet the potential impact of each round is great. As a result, tactical nuclear weapon employment is

modeled at a round-by-round and target-by-target degree of resolution. furthermore, the use of

tactical nuclear weapons may be greatly influenced by the locations of potential targets. The use of

tactical nuclear weapons is often precluded to avoid damage or injury to nearby civilian populations

and friendly troops. Targets may also be aggregated in order to damage two or more units with a

single weapon. Potential nuclear targets include units a small as companies, batteries and individual

missile launchers, thus a tactical nuclear model will need to have input relating to the characteristics

and precise locations of these potential target units.

Models of tactical nuclear warfare within a theater rely on output from a theater-level

conventional model or scenario to define the battlefield situation at the time at which nuclear

weapons may be employed. Theater-level models and 3cenarios generally model units only at the

division level or higher, often in fairly large discrete time steps (12 to 24 hours). As a result, the

locations and actions of potential target units will not be represented in the outputs from these

sources. Even if model or scenario results were available that tracked units at the required degree of

resolution in time and space, the locations and actions of small units could easily vary within lie

same overall theater scenario. Therefore, we must regard the detailed actions and locations of

potential target units as not merely unknown (given typical theater scenarios), but uncertain: art,-

analysis highly dependent upon unit locations (such as that based on tactical nuclear models) will

need to consider the effects of such uncertainty.
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This paper proposes a model for representing a laydown of nuclear weapons at the theater level.

It begins by developing probability models to reflect the uncertainty inherent in representations of

the activities and locations of potential nuclear targets in the context of any general theater scenario.

These models can provide an analytic or Monte Carlo solution to the effect of a nuclear exchange

upon all potential targets on both sides. This solution may be used directly to support analyses

related to the use of nuclear weapons in a theater, or it may be used to determine the possible

outcomes of an exchange to construct inputs to a theater-level conventional simulation.

Several models of conventional warfare exist at the theater level. Two models used at CAA are

called the Concept Evaluation Model (CEM) and the Force Evaluation Model (FORCEM).

FOPCEM has several important characteristics it shares with other theater-level simulations. First.

it is a low resolution model, representing combat forces at the division and higher level. This level of

resolution is common for theater-level models and scenarios. Second, it is a deterministic, expected

value model. As an expected value model, it requires a single input data set, which represents the

mean or expected value of various stochastic processes, and produces a single output set.

Unfoaunately, an expected value model does not produce an expected value output: the use of this

type of model creates special concerns in properly handling the uncertainty inherent in the input

data. In this paper, we assume that we have FORCEM outputs available that define the initial

theater-level situation at the time that nuclear weapons may be employed. However, the techniques

presented herein may be used with any general theater-level model or scenario.

Nuclear Force Arrays

A nuclear force array is a set of coordinates specifying the actual locations of combat units that

may be potential nuclear targets within some theater-level model or scenario. A unit is a military

organization composed of personnel and equipment that may be killed or destroyed by nuclear

weapons. Nuclear targets are units that are planned for engagement by tactical nuclear weapons.

Relocatable targets are units which have the capability to move during the scenario of interest

(although they may or may not retain mission capability during movement). Almost all of the

combat units are potential relocatable targets. As a consequence of this movement capability, units

do not remain in a static array; the force array will change over time in accordance with the overall

theater-level model or scenario.

2
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When a combat simulation is run at a resolution sufficient to represent each potential nuclear

target unit, it is important to correctly array the various units at the start of the simulation. We

normally assume that tactical nuclear weapons will be employed only after some period of theater-

level conventional combat. Thus the starting point for a nuclear simulation will be at some point in

time after the initiation of conflict. Starting positions for the nuclear simulation, representing unit

locations at some point during a conventional conflict, may be generated from a large-scale

conventional simulation, such as a theater combat model (e.g., FORCEM), or an established

scenario (which itself is frequently generated from a wargame or larger simulation). In either case,

the model output or scenario will frequently only specify the center of mass location of the major

combat formations (such as divisions), without disaggregation into smaller units (such as maneuver

and logistics companies).

Even in situations where the unit locations are specified to the degree of resolution desired, it is

important to realize that the locations of combat units in some future conflict cannot be known with

certainty (if we omit the trivial case of current peacetime deployment). As a result, any specific

model output or scenario specification must be regarded as a single realization of the set of random

variables describing all possible locations of the combat units.

Tactical nuclear weapons are employed against military targets in a theater of war to achieve a

tactical or operational objective. Tactical nuclear weapons, particularly small yield weapons fired by

artillery, may be employed against mobile units as small as a maneuver company, artillery firing

section, or missile launcher. On a theater scale, the number of such potential targets is on the order

of 104. Most theater-level models, such as FORCEM, and theater-level scenarios provide locations

only for division-sized or specialized units. The generation of company-level locations across the

theater, given typical theater scenario resolution, is a formidable task.

Current Arraying Practice

Currently, two methods are employed to specify the location of smaller level units prior to

running a high resolution nuclear simulation. The first method is to have a subject matter expert

(such as a military officer with doctrinal knowledge and field experience) manually array the units

on a map. Although this method generates an array that is realistic, it may take an officer several

months, working full time, to generate an array for a two-sided theater exchange, Also, this array is

only a single realization of a set of random variables, as any other equally qualified officer (or even

3
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the same officer at a different time) will generate an array that is most likely similar but

nevertheless different in many specific details.

Another approach that is currently used is to generate a template consisting of stylized unit

locations based on doctrine. This template will specify a doctrinally correct set of relationships

between units, but is sure to differ from any specific array that may be generated for actual forces

deployed on actual terrain.

Both approaches fail to take into account the variations that will occur between any specific

force arrays that may be generated (or which may occur in some future conflict). The first method

permits alternative arrays to be generated, but this can be done only with great time and expense,

and requires separate runs of a simulation to account for the impact of the array variations. The

second (templating) method cannot be used to generate any different arrays (unless doctrine or the

forces represented are changed).

Our Approach

It is our thesis that uncertainty may only properly be described using a probability distribution.

Since the unit locations in some future conflict are unknown, we must specify a probability

distribution to capture that uncertainty. Before manual arraying, a subject matter expert will

explicitly or implicitly examine the force structure, mission, and doctrine of each side to establish a

doctrinal relationship among the units on each side. This set of doctrinal relationships is basically

the same as the template that might be developed for that force. The subject matter expert will then

shift the units from these doctrinal locations based on the terrain, unit missions, etc. Shifts in one

unit will likely cause shifts in adjacent unit locations to avoid "gaps" and "overlaps."

Our probability model is based on this representation of an expert arrayer. We begin with a

doctrinal template that establishes the most likely location for the unit. This template specifies the

mean vectors for the coordinates of the units in the array. Shifts from this most likely value based

on the terrain, unit missions, etc. are accounted for through variances for each unit location. Shifts

in adjacent unit values are accounted for using covariances for each pair of units. A multinormal

distribution for the distances across the width of the template (generally parallel to the FLOT) and

another multinormal distribution for the depth of the template (generally perpendicular to the

FLOT) with the appropriate means, variances, and covariances is used to describe our uncertainty

about the unit locations. Details pertaining to this model are given in Section V.

4
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An example of a template for a notional Red division is shown in Figure 1, below. The template

overlaid with isoprobability contours is shown in Figure 2.

25- 35 Km
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)_ RAG reIMAL
IIII

-III- PID

R DIV DIVISION 20 - 30 Km
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RAG 1 I
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Figure 1. Example of a Template for a Red Division

25-35 Km
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Aa 20 - 30 Km
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QT ECOD XO 3
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Figure 2. Example of a Template for a Red Division with Isoprobability Contours
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Templates are established for each unit that is represented in the theater model or scenario

(usually divisions). Since the templates are based on doctrine, many units will share the same

template. The coordinates for each unit subordinate to the templated unit are specified relative to

the center of mass (or for convenience the front right corner) of the larger unit; these relative

coordinates can easily be converted to terrain based coordinates if desired. The X-axis is therefore

across the front of the unit (generally parallel to the FLOT if the unit is in the front lines) and the

Y-axis is perpendicular to the front of the unit (generally measured as a distance from the FLOT if

the unit is in the front lines) (Figure 3).

Y

XX

Division
area

Front

Figure 3. Orientation of the X and Y axis for a Division Template

The parameters of the prior distribution for all units will be based on expert opinion. Posterior

distributions for the parameters will be based on data collected from a system known as the Nuclear

Fire Planning and Assessment Model Graphical Analysis Package (NUFAM-GAP). The procedure

for doing this is discussed in more detail in Section V.

Determining the Impact of the Probabilistic Force Arrays on the Nuclear Exchange

The actual and perceived locations of acquired units, relative to each other and relative to areas

from which nuclear weapons are precluded, will dictate what nuclear weapons may be employed to

engage the potential target units. Nuclear weapons will be employed as dictated by the operational

and strategic situation, with the intent of causing a sudden and dramatic change in the conduct of

the battle. The commander of the forces on a side will have an overall objective (such as stabilizing

the Forward Line of Own Troops - FLOT - in the defense or achieving a breakthrough in the

6
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offense) that will necessitnte the use of nuclear weapons. In order to meet this objective, the

commander will specify the defeat criteria against each unit - that is, the necessary degree of

damage to be achieved against each unit to meet his objective. The defeat criteria will differ from

unit to unit depending upon the unit mission, the posture, the equipment, etc. The criteria applied

to larger units (such as divisions) will frequently focus fires on critical units. For example, the defeat

criteria for a unit might be achieving a latent lethal dose (about 450 rad) against at least 50% of the

personnel in the unit. The defeat criteria for a particular division might be to defeat at least 50% of

the infantry units or at least 40% of the armor units in the division.

Nuclear weapons will be employed to maximize the probability of defeating as many units as

possible. Planners will specify a desired ground zero (DGZ) for each weapon (an aimpoint) that will

meet the defeat criteria for one or more units subject to any constraints placed upon the

employment of the weapons. National policy for nuclear weapons employment will normally

preclude the use of the weapons in areas that will cause civilian casualties, casualties to friendly

troops, etc. We refer to these policy constraints as preclusion and an area within which a nuclear

weapon cannot be employed as a preclusion area. Ideally, the DGZ for a weapon employed against a

single target unit would be the center of mass of that unit. The existence of preclusion areas will

often force the planner to shift the DGZ away from the unit center of mass. The DGZ may also be

shifted to cause the weapon to cover two or more units with effects sufficient to meet the defeat

criteria simultaneously. We refer to combining target units into a single target for a weapon as

target aggregation or simply aggregation.

The closer units are together, the more likely they can be engaged as an aggregate target. The

closer they are to preclusion areas, the more likely they will be engaged with a shifted DGZ or not

engaged at all. Since the locations (both actual and perceived) of the units are random, limitations

on the type and locations of the weapons that may be employed resulting from preclusion and

aggregation, and the effects that can be realized against the targets, are also random. We can

combine our distributions for each unit location, errors in target location and weapon delivery, and

the possibilities of aggregation and preclusion, into a probability for each unit that it may be

defeated with a particular nuclear weapon. The impact of the defeat or failure to defeat each unit

can be combined across the theater to determine the possible outcomes of a theater-level exchange of

tactical nuclear weapons.

7
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Section II. THE MODEL

Overview

The model developed within this paper uses the probabilistic force arrays as a fundamental

building block to determining the possible outcomes of a tactical nuclear exchange. We start with

the idea of using a distribution to describe the actual ground location of a targetable unit at the

time that nuclear weapons may be employed. Targeting will actually be performed upon units that

are found by some sensor, identified and retained as valid targets (we use the term available to

describe units meeting these criteria) through some target acquisition process. Associated with the

acquisition means is some random target location error, which we describe with a distribution

wcpenuent on the numbers and types of sensors available for target acquisition. The location actually

used for targeting is the perceived location; the distribution of the perceived location is found by

combining the distribution of the actual location with the appropriate target location error

distribution.

If a targetable unit is available, we consider it as a possible target for each weapon that is

potentially available that can be used against that type of target (at a later step in the process, we

will allocate available weapons against potential targets). If there were no constraints upon the use

of tactical nuclear weapons and we used a weapon for each target, each weapon would be aimed at

the center of the associated perceived target location. However, targets may be aggregated; that is, a

single weapon may be used against two or more targets. In this model, we consider only aggregate

target pairs; it is relatively unusual in practice for 3 or more targets to be available for aggregation.

If a weapon is used against two targets, the aimpoint (DGZ) will be directed against a point

between the two targets.

Nuclear weapons use may also be constrained by requiring that they avoid (preclude) creating

effects within preclusion areas. If these constraints are applicable, an available target may be

precluded from fire with a particular weapon if there is no way it can be engaged without causing

unacceptable damage in one or more preclusion areas. In other cases, it may be possible to engage

the target without causing unacceptable damage in any preclusion areas by shifting the DGZ away

from target center (or directly between two targets if aggregated) in a direction away from the

closest preclusion area.
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Thus we have 5 possible outcomes for each unit / veapon pair. An available unit may be:

(1) Engaged as a single target without a DGZ shift caused by preclusion,

(2) Engaged as a single target with a DGZ shift caused by preclusion,

(3) Engaged as part of an aggregate target pair without a DGZ shift caused by preclusion,

(4) Engaged as part of an aggregate target pair with a DGZ shift caused by preclusion, or

(5) Precluded from engagement.

These outcomes all have an associated probabilities of occurrence based on the distribution of the

perceived target locations and their separation from various preclusion areas.

Given a set of available weapons, range and target preference considerations, it is possible to

determine the set of weapons that may be fired at some subset of the available nonprecluded targets.

If we look at all of the possible available nonprecluded target sets, we can determine the probability

that a given weapon type may be used against each unit.

If a particular weapon type is fired at a unit, the weapon will be aimed at the DGZ (which may

be shifted as explained previously). Each weapon type has an associated random accuracy; thus the

distribution of the point of detonation (Actual Ground Zero or AGZ) will be a combination of the

distributions for the perceived target location and the weapon accuricy. We end up with a

distribution for the AGZ associated with each of the four engagement possibilities where weapons are

fired; from this we can compute the distribution of the distance between the AGZ and the aztual

unit location (from which we can determine the probability that the unit is defeated using the

weapon) for each unit, each weapon, and each engagement possibility. We can combine across the

weapons and engagement possibilities to get the probability of defeat for each unit represented in

our model.

The paper simply derives the distributions and probabilities associated with each step of the

process described above. We start with a set of targetable units whose locations are described using

multivariate probability distributions, and end up with a probability of defeating each unit in the

set. From this, we can determine all possible outcomes of any nuclear exchange with the associated

probabilities. The paper is divided into four major parts. The first part (Chapter 1) provides

background and some of the details behind the scenario. Also discussed in Chapter 1 is the model

used to determine unit availability probabilities. The second part (Chapter 2) focuses on determining

the possible engagement outcomes and the associated DGZ and AGZ distributions. The third part

(Chapter 3) discusses the how to combine the distributions top determine the possible outcomes of a
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nuclear exchange. The final part, conisisting of the of a summary chapter (Chapter 4) and

Appendices, provides additional technical detail.

Some of the subjects discussed are the topic of several separate research papers. When this

occurs, an overview of the topic is provided and the specific papers are referenced for more detail

(Youngren (1989a,b,c]).

Uses of the Model

The probability model for nuclear force arrays described in this paper may be used in three

distinct ways: as a means for selecting specific nuclear exchange outcomes that may be simulated in

low-resolution, expected value, conventional theater-level simulations such as FORCEM; as a

research tool to determine the sensitivity of various outcomes to different assumptions and sets of

input parameters; and as a surrogate for detailed simulation models of nuclear exchanges such as

NUFAM III.

(1) Using the Possible Outcomes to Handle Uncertainty in Expected Value Modeling

A theater-level nuclear exchange may generate many different outcomes which will have a

significantly different effect upon any post-nuclear battle. We use the probability models to estimate

sets of possible nuclear exchange outcomes, which can be partitioned into sets which we expect to

have significantly different effects on the post-exchange conventional battle. The model described in

this paper may be used to estimate the probabilities associated with the defeat of each targetable

unit, which can be aggregated to determine the probabilities associated with the defeat of each unit

represented in FORCEM. If we combine this information with the idea of partitioning of the sample

space into outcome sets that lead to significantly different results at the theater level, we can

determine the most likely outcome (mode) within each partiti6n, and the joint probability associated

with all outcomes within a particular outcome set.

We select an outcome from within each separate partition and use it as input to FORCEM.

Each input set represents a different nuclear exchange outcome with (by assumption) significantly

different theater-level results. The expected value FORCEM simulation can be run several times.

once for each input set, to capture the variability inherent in the nuclear exchange and predict its

effect upon the conventional battle. We can associate the probability of an outcome coming from
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within a particular partition with the probability of the theater-level result. This provides us with a

means for estimating the impact of variability in the input data (in this case, the results of a nuclear

exchange) on the output of the expected value model.

The methodology used to partition the outcome sets and select outcomes for input to FORCEM

is described fully in CAA-RP-89-5, Handling Uncertainty in Input to Expected Value Afodels

(Youngren (1989c]). The methodology developed in this paper permits us to determine all possible

exchange outcomes (in terms of the defeat criteria) with their associated likelihoods of occurrence.

(2) Use as a Research Tool Used to Determine the Sensitivity of Outcomes

The model described in this paper may also be used as a research tool to determine the

sensitivity of various outcomes to different assumptions and sets of input parameters. In theory, this

type of analysis can be conducted using any simulation of a theater nuclear exchange such as

NUFAM III. In practice, however, major simulation models are sufficiently complex, non-

transparent, and time-consuming to set up and run that conducting such analysis becomes lengthy

and difficult. The analysis can be performed using part or all of the probability model described in

this paper. For example, the impact of using a different warhead may be examined. The effect on

preclusion and aggregation can be examined directly by modifying the parameter values in the

equations for preclusion and aggregation probabilities; the impact on the probability of defeating a

unit can be examined to determine the overall effect.

Because of the assumptions and approximations necessary to yield solutions amenable to

calculation in reasonable time, the answers will not be exact. However, the errors in calculations will

be less likely to affect conclusions drawn from comparisons and sensitivity studies than they will

affect any particular realization. Carrying the distribution forward through the analysis is akin to

performing an infinite number of independent samples; errors in closed form estimation of cdf's, ctc.

may be less than that introduced by small sample sizes resulting from lengthy, costly simulations.

We can also avoid these errors in approximation if we are willing to lose a little of the model

transparency. It is possible to estlinte the probabilities of preclusion, aggregation, etc. using a

statistical Monte Carlo approach (Appendix E). The sensitivity of the results to individual values of

the parameters cannot be inferred directly; on the other hand; the accuracy of the results should be

more accurate than that obtained in a detailed simulation model using a single realization of an

array or using a stylized array.
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(3) Use as a Surrogate for Detailed Simulation Models such as NUFAM III

The final use of the model may be as a surrogate to the more detailed simulation models. The

advantage of using a model such as this lies in its speed (at least for answers pertaining to individual

units) and transparency. The corresponding tradeoff lies in the approximations made to yield

calculable results. 11 the approach of using a Monte Carlo statistical simulation is used to estimate

the various location-based probabilities, the answers obtained should be at least as accurate as the

comparable answers obtained from a detailed simulation.

If the direct probability calculations are used to determine the probabilities, there will be some

error introduced through the simplifying assumptions made in each section. The author intends to

conduct further simulation studies to estimate the error of the approximations made herein. The use

of the model with direct probability calculations as a surrogate, except in cases where an alternative

is not possible. should be considered only after a better appreciation of the source and impact of the

errors of approximation are realized.

Section III. MODELING THE ACQUISITION AND MOVEMENT OF TARGET UNITS

Before a potential target unit can be planned for engagement with nuclear weapons. it must be

acquired and retained as a viable target long enough to plan the nuclear fires. In order to alter the

course of the battle decisively, nuclear weapons use may be constrained to achieve a specific purpose

within an appropriate period of time. As a result, weapons may not be fired at potential targets as

they are acquired; also, there may be a significant delay between the time the fires are planned and

the time of detonation.

Low resolution theater-level models such as FORCEM generally move units periodically using a

relatively long time step. In FORCEM, division-sized units locations are updated every 12 hours.

Obviously, units subordinate to that division may be in movement during that 12 hour period. This

movement may affect our ability to retain the subordinate units as viable targets, and affect our

ability to successfully engage them. In order to determine if a unit can be acquired and/or engaged

as a stationary target, we must be able to represent the movement of these small units within the 12

hour time step.
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It is clear that we must be able to represent the acquisition and movement processes at a higher

degree of resolution in time and space then that provided by FORCEM and similar theater-level

models or scenarios. Our solution to this problem is to model the acquisition and the movement

processes of each unit as independent, alternating renewal processes. This approach is summarized

below.

The Target Acquisition Process

Detecting target units with sufficient accuracy to plan for nuclear fires is the process of target

acquisition. As a consequence of the movement capability of relocatable targets, they do not remain

acquired indefinitely (unless they can be tracked indefinitely once acquired); at some time. they

move. and the acquisition is no longer valid. Even if a tracking capability exists, there is a

probability that such tracking will be lost over time.

The outcome of the target acquisition process is an acquisition list. A target unit is acquired

when it is detected by a sensor, identified as a target, and placed on the acquisition list. A target

unit may be dropped from the list either due to a negative sensor report (i.e., we no longer detect its

presence), or it may be dropped after some period of time when the acquisition information cannot

be updated. Any given target unit will alternate between two states: acquired (retained on the list)

or not acquired. A target acquisition process is therefore a temporal series of such acquisition states.

The time to acquisition, Ta, is the time it takes to acquire a target once any previous acquisition

has been dropped; the time of retention, Tr, is the time a target is retained on the acquisition list.

Targets that are engaged using conventional weapons are generally fired upon soon after

acquisition. Nuclear targets differ from conventional as they are planned for specific purposes

dictated by the overall tactical and/or strategic situation. As a result, they are not normally engaged

as they are acquired; rather, nuclear fires are directed at targets that are acquired and perceived to

be in place at the time the weapons are approved for fire.

Figure 4 illustrates a representative acquisition sequence for a relocatable target unit. Once the

unit has been dropped from the list, it is immediately subject to being reacquired. We expect that

nuclear weapons use will occur after the conventional battle has been underway for some time: thus.

we are interested in the acquisition probabilities at some point in time well after the acquisition

process has begun. Our evaluation of the acquisition status of units is made during a short period of
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time when planning fires for a particular nuclear exchange; during this short period, we assume that

the acquisition situation remains about the same; therefore the times to acquisition { Ta } are

modeled as independent and identically distributed (iid). The same assumption is made about the

times of retention { Tr } during this period. For relocatable targets, we can approximate the target

acquisition process as an alternating renewal process of indefinite length. Both the time that the

target is dropped from the list and the time that the target is acquired are renewal point- of this

alternating renewal process.

Retained Tr T,

Not acquired Ta Ta Ta

Time >

Acquisition Acquisition

Figure 4. Possible Target Acquisition Sequence

The Movement State of tht Relocatable Target

The target unit may be in one of two alternating states with respect to movement: it can be in

the move state (moving), or it can be in the stay state (' ationary). We define the random variable S

to represent the length of time that a target is stationary and the random variable M to indicate the

length of time that it is moving. Again, our evaluation of movement status of units is made during

a short period of time when planning fires or firing a particular nuclear exchange; during this short

period, we assume that all S and M are mutually independenm and are distributed in accordance with

distributions FS and FM, respectively, and represent the unit movement is an alternating renewal

process in the same manner as the target acquisition process.

Representing the Target Acquisition and Movement Process

When constructing a model of the acquisition and engagement of relocatable nuclear targets, it

is not necessary to explicitly represent the target acquisition and movement processes in a detailed

simulation. Since these processes can be represented as alternatirj renewal processes, well-known

results of renewal theory provide us with the following quantities for any unit:
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1. The probability that the unit is currently on an acquisition list.

2. The probability that the unit remains on the acquisition list for any stated interval of time.

3. The probability that the unit was stationary at the time that it was last observed.

4. The probability that the unit remains stationary for any stated interval of time.

From these measures, it is possible to determine the probability (pvil ) that a potential target unit

is acquired and can be retained as a target until detonation. For additional detail, see Youngren

[1989a,b].

Section IV. NOTATION AND TARGET GEOMETRY

Target and Weapon Radii

We assume that target units are circular with a known radius rui for unit i. Personnel and

equipment are assumed to be uniformly distributed across the unit area, so a defeat criteria of -C

percent of casualties to unit i" translates to "C percent of the circular area of unit z covered by

casualty-producing nuclear effects." Nuclear effects are also assumed to be circular with a single

dominant effect of interest for any particular unit i: we denote the radius of the dominant weapon

effect for weapon w as r W . Note that rw will also depend upon the defeat criteria; the radius for

moderate damage to a particular type of equipment, for example, is larger than the radius for severe

damage to the same type of equipment.

The weapon and target geometries discussed in this section are conditioned on knowledge of th

location of the unit (target) center and the weapon center. In Chapter 2, we discuss how we remove

this conditioning by placing distributions on the unit locations and upon the desired and actual

points of werDon detonation.

For a weapon w to be able to achieve a particular known defeat criteria against a specific unit

with known characteristics, the circle of weapon effects rw drawn around the point of detonation

(ground zero) must overlap the circle of radius ru. drawn around unit i with at least the specified

percentage of the target unit area overlapped. For this to occur, the separation between the center of

unit i and the ground zero location of unit w must be less than or equal to a distance diw. If we

consult Figure 5, we see that if we draw a line segment between the point of intersection of the

target and weapon circles, we can construct two right triangles. Label the distance between the point

of the upper intersection of the target and weapon circles and the line W-Uj as a. The distance from
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the center of the weapon circle (ground zero) to the line segment is labeled d W; the distance from

the center of the target unit circle to the line segment is labeled d u . The left-hand right triangle has

a hypotenuse of length ru i and sides of length a and d ui The right-hand right triangle has a

hypotenuse of length r W and sides of length a and d W . We denote the total distance from W to Uj

as di; thus, diw d W + d Ui.

Unit

Wepn

Figure 5. Overlap of Weapon and Unit Circles

Solving for d W and dui as functions of rui, r w, and di,,, yields:

2 _ 2 2?rU. - rw + dw
du and dW d du.

The area of the portion of the intersection on the right (Figure 6) is

rx u.r 2 2d

A, f 2UdU. r ~ - d d sin-' ]

A 1 J ,r~ix 2 dx _9  -2 dir~ri d2  - d2t i  -t(d i ux=d u. 
1

Unit

We4pon

Figure 6. Areas A, and A2 of the Overlap
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By symmetry, the area of the portion of the intersection on the left is

A, = 1[ [ r r - d r v -- 2 - d  -- d v sin-1 ( w )]

Thus the total area of the intersection is:

Ai, = A, + A, = E (rr +r v)

[d ru. 4r-d2r +dw J r - d  +d ,sin- ( ) + dwsin'(dw)]

Since A i w is the area of coverage required to achieve the commander's defeat criteria, and du. and
I

dw can be expressed in terms of ru , rw, and diw, di. is the only unknown in this equation. A

standard solution technique such as Newton's Method can be used to solve for di w*

To summarize, we define the following values, which can be computed from input data

specifying characteristics of the unit and the weapon :

r w a Radius of weapon effect (for each specified weapon)

ru radius of unit i.

diW-" the maximum distance that a weapon w can be displaced from the center of mass

of a targeted unit i and still achieve the commander's defeat criteria.

A iw- the area of coverage of the target unit i by the weapon effects radius r W required

to achieve the commander's defeat criteria.

Preclusion

Important factors that must be considered in modeling the effects of the use of nuclear weapons

are the constraints placed upon DGZ (desired ground zero) placement caused by rules which are

intended to preclude damage and injuries to civilian population centers. This is more applicable to

US fire planning than Soviet, but the model has to be able to represent the effects for both.

We assume that the preclusion areas are circular. For population centers, these are normally

circles that can be drawn around an urban area such that 95% of the population lives within the

circle. Large, irregular population centers may consist of more than one overlapping preclusion circle.
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We denote the radius of a preclusion area k as rp . All weapon DGZ's must be situated such that

there is a high degree of confidence that no significant weapon effects will overlap any of the

preclusion area. Weapon effects tables (e.g., FM 101-31-2 [1986]) or standard computer programs for

weapons effects will provide or compute the necessary offset distance rw(preclusion), which is a

distance at which one can be P% certain (for some confidence level P) that no significant weapon

effects will extend. rw(preclusion) thus includes consideration of the weapon CEP and any

appropriate safety factor. Linear preclusion areas (e.g., FLOT for troop safety) may be represented

as circles with an outer edge tangent to the point of the linear preclusion area closest to the DGZ. In

order to meet preclusion criteria, the DGZ for weapon w can be located no closer than a distance

rwp ( rw(preclusion) + rp ) to the center of the circular preclusion area k (Figure 7).

Figure 7. Shift in DGZ Due to Preclusion

If we consider a unit i with radius ru, the desired ground zero (for a single target - no

aggregation) will always be target center if preclusion considerations do not intervene. If the

perceived location of the unit center of mass is at a distance greater than or equal to r wpk from the

preclusion area, then no DGZ shift is necessary. If, on the other hand, the the perceived location of

the unit center of mass is at a distance less than r wpk from the preclusion area, then the DGZ must

be shifted in a direction away from the preclusion area. It is possible to displace the DGZ up to a

maximum distance of di. and still meet the commander's defeat criteria for that unit. If a shift

greater than diw is required, then the unit cannot be engaged with a nuclear weapon of size w. Thus
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we define a distance r wpkUti as the closest distance that the perceived center of mass location for

unit i can approach a preclusion area k using weapon w and still be capable of achieving the defeat

criteria for unit i. Clearly, r Wpk u, = r Wpk - d i W (Figure 8).

In summary, when examining the possibility of shifting a DGZ away from perceived target

center to preclude damage to preclusion areas k, we have the following distances defined:

r w (preclusion) a Radius of weapon effect of concern for preclusion purposes

rtu- radius of unit i

rpk radius of preclusion area k

rwpk = rw(preclus:,n) + rp , the closest distance that a DGZ for weapon w can approach

preclusion area k.

rwp - wp - diW, the closest distance that a perceived location for unit i can approach

preclusion area k using weapon w and still achieve the defeat criteria for unit i.

rw rw (preclusion)

Figure 8. Target Coverage Using a Shifted DGZ

Aggregation

It may be possible to engage two or more target units i, j, ... with a single nuclear weapon, if it

is possible to position a weapon w such that it is simultaneously within a distance di W of unit i, dj 1,

of unit j, etc. In the probability model developed in this paper, we only deal with pairwise

aggregation. If we are considering two units i and j for aggregation, we define a distance Dij
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between their perceived locations. We refer to the perceived unit locations, rather than the actual

locations, because the aggregation is done by target planners based on their knowledge of the units.

The perceived unit location of unit i has random coordinates XiL and YiL; computing the

distribution of XiL and YiL is discussed in Chapter 2. Clearly,D? XL ]2,
D11= X jL -X L + [ YL - jL

Barring preclusion considerations, the desired ground zero will be located at a point which

maximizes the coverage of the weapon effects against both targets. This implies that the DGZ will

be located somewhere on a line segment between the perceived locations of units i and j, such that

the distance between this point and units i and j is less than di W and di . respectively.

Suppose that we are interested in determining the DGZ for an aggregate target formed from

units i and j. We will choose the new DGZ along a line segment connecting units i and j (Figure 9).

thus we can express the DGZ as a linear combination of the coordinates of units i and j. Let Dij

denote the distance from the DGZ to unit j; thus the distance from the DGZ to unit i must be

(1-a) Di.

(1-a) Dij aDij

DGZ

Figure 9. Location of DGZ Given Aggregation (Without Preclusion Shift)

The maximum separation between the two targets, dlj, is defined as the sum of di. and djw.

The feasible region for the DGZ lies in the area of overlap of di. and dj, when di. + dj. _> Dij

lD . - d  d.
(Figure 10). Clearly _ <a < where a is based on the distance from target j as shown.

DD 1
di.u

D i  djw

Figure 10. Feasible Area for DGZ Given Aggregation
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The random variables representing the coordinates of the DGZ, XDGZ and YDGZ, are computed

from the located (perceived) unit coordinates ( XiL, YiL ) and ( XjL, YjL ) as follows:

XDGZ = 0a XiL + (1 - a ) XjL

YDGZ = ca YiL + (1 - a ) YjL
D.- - diw djw

The proportion a, D < a < , may be selected in various ways as discussed in

Chapter 2.

To recapitulate, the following terms are defined for use in handling aggregation of targets:

XiL the X-coordinate of the perceived location of unit i

YiL -the Y-coordinate of the perceived location of unit i

XDGZ a Xi L + (1 - a ) Xj L , the X-coordinate of the aggregate target DGZ

YDGZ a Yi, + (1 - a ) YjL, the Y-coordinate of the aggregate target DGZ

dij =- di, + djw, the maximum separation between the two target units i and j permissible

for the unit to be engaged with weapon w.

Combining Preclusion and Aggregation

The aggregate target formed from a unit pair ( i,j ) is subject to the same preclusion criteria as

any single unit engaged with a nuclear weapon. Thus we check the aggregate DGZ location (with

coordinates XDGZ and YDGZ) to see if the distance from it is less than rwp for any preclusion area

k, given the weapon w that will be employed against the aggregate target. If the DGZ location is

closer than rwpk to any preclusion area k, the DGZ must be shifted away from the preclusion area.

The techniques for computing the DGZ shift are identical to those employed for a single target

discussed previously.

Section V. THE UNIT LOCATION MODEL

Introduction

When a subject-matter expert (usually military with field experience) manually arrays small

units within a targer .,zed unit (e.g., battalions within a division), he begins, at least mentally, with

a "typical" set of relationships between units based on military doctrine and tactics, given the

general scenario. This set of relationships is then modified to take into account terrain features, the
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specific scenario-based missions of units, etc. We can picture the "typical" set of relationships as a

stylized array or template for the larger unit (e.g., division). Actual unit locations can then be

expressed in terms of deviations from the template. As always, when we are a priori uncertain about

these deviations, we describe our uncertainty in terms of probability distributions.

The Distributional Form

As we saw in Figure 3, we establish cartesian axes such that the y-axis is parallel to the

orientation of the unit, and the x-axis is perpendicular to the unit orientation. The model described

herein uses the normal distribution to model deviations from each templated unit location in both

the x and y directions. That is, let X i measure the deviation across the width of unit i, and Yi

measure the deviation across the depth of the same unit. The marginal univariate distributions for

X i and Yi, i = 1, ... , m, are assumed to be normal.

If we examine actual arrays of units that have been prepared for use in other studies, and plot

the contours of likely shifts, the contours tend to be ellipses aligned along one of the two axes. That

is, the likely locations for units tend to be parallel to the FLOT for most units; perpendicular to the

FLOT for others. Rarely if ever are units primarily oriented diagonally to the FLOT. Thus it is

reasonable to assume that all Xi's are mutually independent of all Yi's for all i, which yields

probability contour ellipses parallel or perpendicular to the FLOT.

It is also apparent when examining arrays prepared for other studies that the deviations across

the width are not independent, and the deviations across the depth are not independent as well.

Because terrain and military tactics tend to cause a similar shift in the width and/or the depth of

adjacent units, we desire to establish a model where the the X variables have a positive correlation

between adjacent units. The same holds true for the Y variables. We can arrive at such a model if

we use a generalized multinormal distribution for the coordinates ( X1 , X2, ..., X, ) and ( Y 1 , Y 2,

.... Y.. ) of m units within a larger unit area. We know that any subset ( X1 , X2, ... X1 ), s < M,

or any set of linear functions of ( X1, X2 1, ... , Xm ) are also distributed as multinormal. For

example, each pair of X variables and pair of Y variables has a bivariate normal distribution with a

nonzero correlation. That is, for any adjacent units i and j, the pair ( Xi, Xj ) - BVN[ (i,/ x),

or2. '02.)) pi ] and the pair ( Yi, Y, ) BVN[ (pyi,pyi), 0, (i'a 2 )' PYij ] One of the properties of

the bivariate normal distribution is that the variable U ( X i - Xj)

Z- , , 2 - ); Vii ( Yi - Yj ) is distributed similarly. Thus the
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squared distance between unit i and unit j, ( X i - Xj )2 + ( Yi - Yj )2, is distributed as the sum

of squared normals.

If we consider the variables Uij and Ujk which will be used in part to determine the distance

between unit i and unit j and the distance between j and k, Uj and Ujk are dependent, jointly

distributed as bivariate normal when conditioned on Xi.

We will consider aggregation and bonus effects for pairs of targets only. Therefore, we will only

be concerned with the distributions of pairs ( Xi - X, ) and ( Yi - Yi ) for adjacent units ? and j;

they will be determined independently and any dependencies between non-adjacent unit pairs will be

ignored.

Sources of Data for Array Locations

The prior multinormal distributions for the ( X, Y ) locations of the units will be obtained from

subject matter expert opinion. Any suitable scheme for eliciting expert opinion will suffice; I

recommend Lindley [1983] as a good source. The mean vectors will be constructed by asking the

subject matter expert(s) to set up a doctrinal, template (stylized array) for the forces of interest.

given the force structure (dictated by the study) and the overall tactical and operational situation

(dictated by the theater-level model or scenario). The separation of units in the template is

established on any arbitrary nominal scale; actual coordinates will be generated through some scale

multiplier of the overall width and depth of the unit being templated. For example, if templating a

division with two brigades on line, each brigade may have a frontage of 1/2 the division frontage;

the battalions within the brigades will be similarly separated. Exceptions to this might be the Y-

coordinate (distance from FLOT) for artillery units - artillery is generally placed at some constant

setback distance from the FLOT regardless of other circumstances. The template (which has mostly

relative coordinates) is translated into scaled coordinates given the dimensions of the templated unit.

For example, if the division frontage is 10 km, the two forward brigades will have a scaled frontage

of 5 km each.

The variance/covariance matrix is similarly established by the subject matter expert on the

same nominal scale. Variances will be elicited individually; covariances will be established through

independent pairwise comparison. Although this will not yield a true multivariate relationship set, it

is generally not possible for experts to generate a large variance/covariance matrix directly (rather
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than pairwise). This approach is also consistent with the evaluations of separation distances between

units that will be made in Chapter 2. If necessary, a non-informative prior distribution may be used.

The mean vectors, denoted as M., and My, are assumed to be known for any invariant specified

doctrine and theater scenario. The variance/covariance matrices, denoted as E and Ey, are assumed

to be unknown and the initial expert-generated matrices will serve as prior distributions on the E's.

This parameter distribution is updated using standard Bayesian techniques (Appendix C). The

multinormal distributions of the unit coordinates will be evaluated conditioned on the current best

estimate of ( p, E ).

The sources of the data for updating the matrices E are independent realizations of arrays

generated manually by subject matter experts on the NUFAM-GAP workstation (see next

paragraph, below), starting with the templates. The NUFAM-GAP system allows arrays to be

quickly generated with the statistics stored automatically in the workstation.

The NUFAM-GAP Workstation

CAA has acquired a Graphical Analysis Package for the corps-level stochastic nuclear model

NUFAM III called NUFAM-GAP. The NUFAM-GAP workstation consists of a PC accompanied by

a videodisk player and a TV monitor. Map images of the theater of interest (e.g., central Europe)

are displayed from Defense Mapping Agency videodisks onto the TV monitor. The workstation

allows for graphic symbols representing unit locations to be superimposed upon the map image. An

analyst can use a mouse to easily move the unit symbols on the map, rapidly forming a force array

which is captured on a data base.

To use the NUFAM-GAP workstation to generate data for the nuclear force array probability

distributions, the analyst starts with a template of the force to be arrayed. This template (which can

also be easily created on the workstation) represents the doctrinally most likely positions for the

force to be arrayed without reference to terrain. Stylized arrays created for other nuclear studies may

be used as one source for array templates. The unit positions on the template represent the mean

vector in the X and Y coordinate directions.

After displaying the template on the terrain image, the analyst rapidly shifts the unit positions

as necessary to account for the terrain, keeping in mind the scenario and unit mission. The shifts
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from the template location are stored in a data base, and the squared distances between shifted

locations and template locations represent a single realization of the variance/covariance matrix.

The analyst (or other analysts) can do this repetitively, normally using different sections of terrain

within the same general area. The realizations form the data used to update the most recent

variance/covariance distribution, using Bayes' Law.

Assumptions

Several major assumptions are made in order to produce a model whose results can be computed

in reasonable time. These assumptions are summarized below.

a. Independence Between X and Y Coordinates. All X coordinates for all units are assumed to

be mutually independent of all Y coordinates for all units.

b. Aggregation and Bonus Effects are Evaluated for Pairs. The probability that any unit j, j :

i, being engaged along with unit i as an aggregate target is considered independently for each j. Only

the pairs with the greatest likelihood (largest marginal probability) exceeding some threshold are

considered for further evaluation in weapon assignments and probabilities of defeat. Similar

considerations are employed for bonus effect calculations. The effect of pairwise consideration forms

a bound on the probability that a unit i will be aggregated with some other unit j (see the section on

"Evaluating Joint Probabilities" in Chapter 3).

c. Mixing Parameters Approximated as Constants. The coordinates of the Desired Ground Zero

(DGZ) shifted due to preclusion and/or aggregation is a linear combination a X i + (1-a) Xi of

some normally-distributed coordinates ( Xi, Xj ). The mixing parameter a is generally a function of

the straight-line distance Dij between the locations of i and j, which makes the linear combination

non-normal and lacking a closed-form solution. In order to preserve the normality of the DGZ

coordinates and ensure a solution, the mixing parameter a is approximated using &, a constant

which is formed using the expectation of D?,j. This techniques is employed for both aggregation and

preclusion. Preliminary simulation studies show that the approximation yields reasonably accurate

results except when the unit mean location is very near a preclusion area, where the approximation

understates the probability of engagement.
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d. Single Shifts Due to Preclusion. It is possible that the DGZ may be shifted from the ideal

location (target center of mass) due to preclusion constraints arising from one or more preclusion

areas. We will bound the probability of a DGZ shifting due to preclusion by the probability of the

DGZ shift being caused by the preclusion area most likely to cause a shift. Furthermore, we will

assume that the shifted DGZ is located on a line through the preclusion area and the prior

(unshifted) DGZ location at a distance rwp away from the preclusion area (k).

e. Approximate Evaluation of Distributions. The normal cdf lacks a closed-form solution, but

many reasonable approximations have been developed which are used herein. The distribution for

quadratic forms in Normal variables must also be approximated (see Appendix D).

f. Targeting Assumptions. There are many assumptions (standard in nuclear effects models)

relating to the nuclear weapon and the target. The target location error and the Circular Error

Probable (CEP) of the weapon are assumed to be distributed as circular Normal. The unit areas.

preclusion areas and the weapon effect areas are circular, with target elements distributed uniformly

over the target unit area. We also assume that at most one weapon will be employed against any

one single target; if this is not true a priori, the data base needs to be defined using multiple targets

located at the same point (without bonus effects).

g. Independence of Evaluation of Results between Units. In ordei to evaluate the probability that

a unit i is defeated, we assume that the probability of defeating unit i (with any weapon) is

independent of the probability of defeating unit j V j 96 i.

h. The Center-of Mass for each Unit Templated is Known. When we form a template for a large

unit, say a division, we assume that the division center-of-mass relative to some terrain coordinates

is known.
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CHAPTER 2

DETERMINING THE DISTRIBUTION OF THE DESIRED GROUND ZERO

Section I. CHAPTER SUMMARY

Summary of Contents

In this chapter, we will determine the various ways that a Desired Ground Zero (DGZ) may be

established. For each way, we will also determine the appropriate distribution for the DGZ. The

DGZ distribution is the distribution of the aimpoint of the weapon. When we include consideration

of the weapon accuracy and reliability, we can use the DGZ distribution to determine the

distribution of the point of detonation (if a detonation occurs) - the Actual Ground Zero (AGZ)

location.

If a target unit i is available (has been acquired and will be retained through the time of

detonation, as discussed in Section III of the previous chapter), then it may be engaged in the

following ways with a particular weapon type w-

(1) Engaged as a single target with no DGZ shift. This will occur if there is no suitable target

unit j, j 0 i, available for aggregation, unit i is not precluded by a preclusion area, and all

preclusion areas are sufficiently far away that the DGZ need not be shifted away from them. In this

case, the DGZ will be located at the center of the perceived target location.

(2) Engaged as a single target with a DGZ shift. This will occur if there is no suitable target

unit j, j :0 i, available for aggregation, unit i is not precluded by a preclusion area, but there is at

least one preclusion area sufficiently close that the DGZ needs to be shifted away from it. In this

case, the DGZ will be located at a point opposite the preclusion area on a line drawn from the

closest preclusion area through the center of the perceived target location.

(3) Engaged as part of an aggregate target with no DGZ shift. This will occur if there is at least
one suitable target unit j, j :$ i, available for aggregation, unit i is not precluded by a preclusion

area, and all preclusion areas are sufficiently far away from the aggregate target DGZ that the DGZ
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need not be shifted away from them. In this case, the DGZ will be located at a point in between the

two target units on a line drawn between the center of the perceived target location and the center

of the location of the closest target unit 3.

(4) Engaged as part of an aggregate target with a DGZ shift. This will occur if there is at least

one suitable target unit j, j : i, available for aggregation, unit i is not precluded by a preclusion

area, but there is at least one preclusion area sufficiently close that the DGZ needs to be shifted

away from it. In this case, the DGZ will be located at a pnvnt opposite the preclusion area on a lia

drawn from the closest preclusion area through the unshifted aggregate DGZ (the DGZ that would

have been selected in paragraph (3) above).

(5) Unit i is not engaged. This will occur if unit i is precluded by any preclusion area.

This determination is made for all weapons w. Note that it is possible for different outcomes to

occur with different weapons. If we are doing a Monte Carlo realization of the model, then only one

of the five outcomes above will occur for each weapon system for each replication. If we are solving

the model analytically, then there is a probability associated with each outcome. For example, for a

particular i and w, outcome 1 may occur with probability 0.2, outcome 2 with probability 0.35.

outcome 3 with probability 0.1, outcome 4 with probability 0.2, and outcome 5 with probability

0.15. In this case, the requirement is simply that all out the outcome probabilities must sum to 1.

Summary of the Logic

The logic followed in this determination is shown in Figure 11. The probabilities listed next to

each line will be explained in detail later in the text. Beginning in the lower left hand corner, the

following steps occur for a each unit i and weapon u.

(1) The distribution of the actual unit location ( X i, Y,) is determined using the template

information (which yields the mean location) and the other distributional information

(variance/covariance vector).

(2) The acquisition and movement models are used to determine the probability that unit Z is

available. The probability that unit j is available is also computed for all j 0 i.
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(3) The perceived unit location ( XiL, YiL) is derived for all available units by combining the

distribution of the target location error with the distribution of the actual unit locations.

(4) The distribution of the distance between the perceived unit location of unit i and all

preclusion areas is computed. The distribution of the distance to the nearest preclusion area (in

terms of probability) determines the p:obability that unit i is precluded. This calculation is also

made for units j that may be aggregated with unit i.

(5) The distribution of the distance between unit i and all units j, j 0 i, is made to determine

the closest (in terms of probability - that is, the unit j that has the highest probability of being close

enough to aggregate using weapon w).

REngage as
single target.
no shift

P -Os t lw . 4 0' i P .u rd ~ w  P e g")

Engage i as N
a Single Target

Roun YEngage as
avai l ? single target.

pSeO,. '49j) O'DGZ shift

Engage i, j as
Aggregate Target

Round Engage as

S aggble aggregate target.
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P..9.9 017L.,,

REngage as

available aggregate target.
DGZ shiftPw vl w a ""w / P..' Iw PW-'0 Om~p(i.. L

Do not engage
Ovsubunitiusing

weapon w.

Figure 12. Logic for Determining the Engagement Type for Unit i (Continued)
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At this point, there are 3 possibilities with respect to unit i: It may be engaged as a single

target, as an aggregate target with the closest unit j, or it may not be engaged at all. Figure 12

continues this logic by looking at the possibility of having to shift a DGZ away from the preferred

location (closest to unit center(s)) due to preclusion.

(6) For / engaged as a single target, the distribution of the distance between the perceived ,iiiin.

location of unit i and closest preclusion area is used to determine the distribution of the DGZ if a

DGZ shift is required. Otherwise, the DGZ (unshifted) is located at the perceived center of unit i.

(7) For i engaged as an aggregate target, the distribution of the distance between the unshifted

DGZ (for unit i and the closest perceived unit j) and the closest preclusion area is used to determij)e

the distribution of the DGZ if a DGZ shift is required. Otherwise, the DGZ (unshifted) is locared

between the perceived centers of units i and j.

(8) For each engagement possibility with unit i and weapon type w, there is an associated

probability Pro,d that a round of weapon type w will be available for use to engage unit i. The

detail on how to compute these probabilities is found in Chapter 3.

The remainder of this chapter derives the distributions for these DGZs.

Summary of the Results

If a target unit i is available (has been acquired and will be retained through the time of

detonation, as discussed in Section III of the previous chapter), then the distributions of the DGZ for

each way that it may be engaged with a particular weapon type w follow:

(1) Engaged as a single target with no DGZ shift.
2 2

XDGZ = XiL - N( A= + Ptri, OTzi + o7.-)

YDGZ -YiL - N( uyj + j- ~j, a 2i + 0, 2

(2) Engaged as a single target with a DGZ shift (the superscript "s" indicates a shifted DGZ).
=8 ~ ()( -0x )20Zt+0,i) )

XDGZ = YiL + (1 - 1 ) XP N( + 1A (o+uk1
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(3) Engaged as part of an aggregate target with no DGZ shift.

XDGZ = a X i L + (I - a ) XjL

N (ui+p ~)+ (1 -a) (p4~ +~)+2( aP,

YDGZ = a YiL + (1 - a ) YjL
N( a(pyj+ ,i) + (I-c)( +

r 2(1i+2) + )2 ( +O ) + 2a(1-la)p,,jor jor )

(4) Engaged as part of an aggregate target with a DGZ shift.

xGZ = XDGZ + (1--3)xp = ,(aXL + (1-a)XjL] + (1-l)xPk

N( aD(p ti + (1-)3(p,,+t ) - (1-i)xp

(a)3) 2(Or2 +.y2) + ((l _ a))3)2 (0,2 _ + 2a10,1 ~p 1  %

DZ = )YDGZ + (1- 3 )yp = '3 [aYiL + (1--a)YL] + (1--l)yp

N( cO(M. 1+hi,.) + (l-a)O(ui,+Ptj) - ('-3)yp,

(a,6)2(~ Vi~ + ((1y Y)~2 o +oyi)+ 2a(1 -a) 2 ~~o

(5) Unit i is not engaged. In this case, there is no DGZ.

The symbols used in the above expressions are:

pri, pui: the mean actual locations (in the x and y directions) of unit i as defined in the

templates.

o ,2 = '2., the variance of the actual locations of unit i in the x and y directions.

p, p_, o, a: mean and variances of the shifts associated with the target location

errors of unit i.

xp, ypk: The coordinates of preclusion area k (as used, the closest preclusion area).

XiL, YiL: The coordinates of the perceived location of unit i.

a: The mixing parameter which determines the location of the unshifted aggregate DGZ.

03: The mixing parameter which determines the location of a shifted DGZ.

The remainder of this chapter simply presents the mathematics behind the distributions for

these DGZs.
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Section II. DERIVATIONS AND RESULTS

The Marginal Distribution of the Actual Unit Locations

The actual unit location for a unit i is expressed in terms of the X-coordinate, Xi, and the Y-

coordinate, Yi. The joint distribution for all m X-coordinates X1, ... , Xm is distributed as

multinormal( pz, E, ) and the joint distribution for all m Y-coordinates Y1, ..., Ym is distributed

as multinormal( py, Ey ). The vector p is known (derived from templates) and the matrix E is

distributed as Wishart (Appendix C). For all of the calculations to follow, E is assumed to take on

its mean value. The marginal distribution of any X i, i = 1, ... , m is distributed as

Normal( i i ) and the marginal distribution of any Yi, i = 1, ... , m is distributed as
2

Normal( u,i, ri )

Determining the Marginal Distribution of the Perceived Unit Location

When a unit is acquired, there is a possible target location error (TLE) associated with the

acquisition. The TLE is modeled using a bivariate normal distribution (in the X and Y direction)

from the aimpoint with zero correlation. Since the marginal distributions of X i and Yi are normally

distributed for any unit i, the perceived unit location associated with that unit is distributed as the

sum of two normals. Let TXi and TYi denote the target location error in the x and y direction.

respectively, for unit i and let XiL and YiL denote the located (perceived) coordinates of unit i.

Then

XiL = + TXi) - N( pr + ptr., o; + to

YiL= (Yi + TYi ) -- N( uyi + Atyi, °'2i + e' 2 )

Determining the Distribution of Distance Between Targets

In order to determine if it is possible to engage two targets with one weapon, one must

determine the distance between the two. We assume that all aggregation will occur only between

pairs of closest adjacent units. The determination will be made by the target analyst based on the

unit aimpoints (perceived center of mass if no shifts occur due to preclusion), not actual unit

locations. Using our normal model given above, the squared distance between two adjacent units

and j, denoted as D?., is:

D [(X i + TXi) - (X + TX)]2 + [Yi + TYi )- (Y + TY 3 )] 2 .
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If we rearrange the terms inside the square brackets, we see that this is the sum of two squared

normals.
D?. = X i -Xj + TXj -TXj ]2 + [yi _-y + T  Tj ]2,

where
= Xi Xj + TX i - T N( a 2

D ; Yj Yj + TYj TYj -N( P yij, 0,ij )

+r + + ,4 + C2-p-

1yij P (Yi + Jto - /Yj - Atyj2 2 2, 2.or".. ( % *+ a + a - 2p~ji o,, o )"
cYtj=o*.T Oli+Oti Y y

To evaluate these terms, let us define unit normal variables Zi j and Zyij such that:

(X i - X j + TX i -TXj pij
ZNj _-rijand

( Yi- Yj + TYi TYj) -pyij ~N(0,1).
gYij LT cYij

Then D? - D2  + D. ' .. ( Z .+ L +orL

The D 21 -- D Yj+Dij ---- Xr~( Zi j +ri Y---- ( Zyij +oaij

and we know that ( Zzij + F )2 X2(A ) and ( Z1 ij + Yi)j (Ay

where X2(A) denotes a non-central chi-square distribution with degrees of freedom L, and a non-

centrality parameter A.

If we define the general quadratic form Q( Z ) S Aj ( ZA - ) , where each Zj ~ N(0,1),
j=I .7z

then we see that the squared distance between units i and j, Dij, is a quadratic form in normal

variables. For evaluating the distribution of D?, see Appendix D. In most cases, the distribution of

D?. can be approximated as Normal F 'oii I pF 2 ( 1 + 2 " )a{.
L) kZ '" kiji .

Modeling Aggregated Target DGZs

The effect of target aggregation is to shift the DGZ for a detonation from target center (or the

point closest to target center allowed by preclusion considerations) to a point along a line drawn

between the centers of two targets that will be at least partially covered by the effects of a single

weapon. Aggregation can occur between units i and j using weapon w whenever the perceived centers
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of i and j are within some maximum allowable distance dij. of each other, where dij, is determined

by the weapon effects radii of weapon w, the sizes of targets i and j, and the commander's guidance

that dictates the minimum acceptable coverage of targets i and j by weapon w. Implicit in this

discussion is the assumption that both targets i and j have been acquired, otherwise aggregation

cannot occur (although bonus effects might).

Suppose that we are interested in determining the DGZ for an aggregate target formed from

units i and j. Recall that, barring preclusion considerations, we will choose the new DGZ along a line

segment connecting units i and j with coordinates as follows:

XDGZ = a XiL + ( I - a ) XjL

YDGZ = a YiL + ( 1 - a ) YjL

The proportion a, 0 < a < 1, may be selected in either one of three different ways:

a. Weighted by Target Priority:

Dij - di. 1 [ dj. Dij Di- d i .

(1) For targets of equal priority and size, a = +d.5

(2) For targets of equal priority but different size, a is weighted by size. Suppose ru, the
3

radius of target j, is greater than rug. Then the DGZ should be closer to target j than i. To do this,
rui  1D.d.r

we note that U < -so we set a -- sw+ - i
rui + ru < Dij +gi+ u+rUj Dij Dij

(3) For targets of different priority and potentially different size, we want to place the DGZ

closer to the higher priority target, taking into account variations in size. We propose a simple

multiplier to the a computed using (1) or (2) above, based on the priority numbers given to each

type target, with priority 1 indicating the highest priority, 2 the second highest priority, etc. If

target i has priority [1] and target j has priority [], then we let a equal the smallest value of
dwan D 2 -d rU% Fdjw Dij-d, Lu -di. < [:j (thus

d. ~ D rtir + LU -5 D 1 -- [ +,,.I
d i +j I ma [,. }D " -

target j is more important), then a will be smaller and the DGZ will be closer to target j. The

opposite will be true if DIJ > []; if Du] = [t], a remains unchangfd.

b. DGZ Set as Close as Possible to Target of Greatest Priority. In this case, we set a such

that the DGZ is as close to the target of greatest priority as possible while still achieving defeat
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criteria against the secondary target. To simplify exposition, suppose that [] < [z] (thus j is more

_rrortant 'ban :). Tbe., ",,e ,vant c, to be as small as possible and thp DGZ to be . a distance

Dij - di. from target j. This is achieved when a - - regardless of any other consideration.

c. a Set to be a Constant. If we desire a constant ca (rather than one dependent upon Dij ) , we

can use any of the formulas in a. or b. above and substitute Iij

E[ D2 10 <D2 <(di. +d i) 2 ] , the conditional expectation of Di, for Dij (the formula for

computing this conditional expectation is given in the section on preclusion given aggregation). The

main reason for doing this is that the random variables representing the coordinates of the DGZ,

XDGZ and YDGZ, remain independent and normally distributed if a is constant. If a is a random

variable (a function of Dij), then we lack a closed-form expression for the distributions of XDGZ and

YDGZ"

Modeling Preclusion Given No Aggregation

We condition the results in this section on the event D 2 > (diw+d j) 2 = d 2W; that is, on the

event that the units i and j are sufficiently far apart that it is not possible to achieve the defeat

criteria against both targets using a single weapon of type w. As a result, we are interested in

examining possible shifts due to preclusion constraints as applied against each target i and j

individually. Barring any preclusion constraints, the DGZ of the weapon would be at the located

(perceived) unit center of mass; that is, at the coordinates ( XiL, YiL ) for unit i.

For each target i, let Dip k denote the distance between preclusion area k and target unit i.

Recall that rwpk = rw(preclusion) + rpk, the closest distance that a DGZ for weapon w can

approach preclusion area k, and rwPkUi = rwpk - diw, the closest distance that a perceived

location for unit i can approach preclusion area k using weapon w and still achieve the defeat

criteria. With regard to the target unit i, preclusion area k and weapon w, there are several possible

outcomes:

a. D' < r~wp U. If this outcome occurs, target i cannot be engaged with weapon w.

'b. D k > r p for all preclusion areas. If this outcome occurs, target i can be engaged

with weapon w without a shift in DGZ caused by preclusion.
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c. r wpk > Dip. > rwp u. for some preclusion area k. If this outcome occurs, target i can

be engaged with weapon w, but the DGZ will need to be shifted away from the located (perceived)

target center of mass to a distance no closer than r wpk to the center of mass of preclusion area k. In

order to achieve as much coverage of the target as possible, we assume that the DGZ will be shifted

along a line drawn through the center of mass of preclusion area k and the perceived center of mass

of target unit z to a point a distance of exactly r wpk away from the center of the preclusion area

(Figure 13). Thus the coordinates of the shifted DGZ, XbGZ and Y';Z. solve the equation

(XGz - Xp )2 + (yGz - YP) rWpk , where ( X k, Yp ) denote the coordiiates of the

preclusion area k center of mass. If we define a random variable 0 such that
r2

G -andY'GZ = 13 iL + 1 - Y
= ' then XIG Z = XiL + (1 - ) X

D iP k k

DGZ s

Uniti IGZ

Preclusion

area

Figure 13. Shift in the DGZ Due to Preclusion (Single Target)

r wp k
We approximate 3 using the constant r W , which allows XbGZ and YDG Z to remain

22

independent and normally distributed. E[ DiP ] is computed from the k entity D2i P  =

(XiL - X~ P)2 + (yiL - y )2 for each target i, ignoring (as an approximation) the dependence on( i --X k -Y k)

Dij > dij. in the evaluation of the expectation. For information on how joint dependencies are

approximated in this paper, see the section on "Evaluating Joint Probabilities" in Chapter 3.
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Modeling Preclusion Given Aggregation

We condition the results in this section on the event Dj ( di. + dj. )2; that is, on the event

that the units i and j are sufficiently close that it is possible to achieve the defeat criteria against

both targets using a single weapon of type w. As a result, we are interested in examining possible

shifts in DGZ due to preclusion constraints as applied against the DGZ of the aggregated targets.

Barring any preclusion constraints, the DGZ of a weapon used against targets i and j would be along

a line segment connecting i and j; that is, at the coordinates XDGZ = a XiL + (1 - a ) XjL,

YDGZ = a YiL + ( 1 - a ) YjL, where a is determined as stated in the section on aggregation.

For the aggregate target formed from units i and j, let Dijpk denote the distance between

preclusion area k and aggregate target ij. If we assume that a shifted DGZ will be placed along a line

drawn through the center of mass of preclusion area k and the previous (unshifted) DGZ located at

coordinates ( XDGZ, YDGZ ) to a point a distance of exactly rwpk away from the center of the

preclusion area (Figure 14), the coordinates of the shifted DGZ, XbJGZ and YDGZ, solve the

equation ( X -- Xp )2 + ( yG -,2 2

L2GZs

UiUnitj

DGZ

U n i l

Precluion
area

Figure 14. Shift in the DGZ Due to Preclusion (Aggregate Target)

Let us define a distance between the aggregate DGZ and preclusion area k as D 2,D P.

(XDGZ - x P ) + - Y )2. Once again there are several possible outcomes:

a. D2p < rwPk g for some preclusion area k, where rwpk - max{ rwptU., rwPkU.}. If

this outcome occurs, either target i or target j cannot be engaged with weapon w at the aggregate

DGZ (one or both targets may still be able to be engaged as single targets).
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b. DD > rwpk for all preclusion areas. If this outcome occurs, the aggregate target

formed from units i and j can be engaged with weapon w without a shift in DGZ caused by

preclusion.

c. > r'wP 2 . for all preclusion areas, but D2 Pk < r2p for some k, andc. Pk WPk aj Dk WPk

(XDaZ - XiL )2 + (YDGZ - YiL )2 > d 2 and/or

(XbGZ - XjL )2 + ( YGz - YjL )2 > dj

BDP rWP , the DGZ will need to be shifted away from the aggregate DGZ to aBeaseDDk wk,

distance no closer than r wpk to the center of mass of preclusion area k at coordinates (XDGz,Y' )2 )2 2 I edfn
YDGZ) which solve the equation ( 'XfGZ - XP1  + ( YGZ - k = k If we define

r w
random variable ,3 such that 32 r then

kDbpk

XbGZ = 2 XDGZ + (1 - 2 ) Xp and Y'GZ = 2 YDGZ + (1 - 3 ) Y~.
k DG DZ+(I-1 Pk'

Once again, we are unable to obtain a closed form solution to the distributions of XsDGZ and YXDGZ

unless we approximate 3 as a constant. We let
- dj W- , which allows XGZ and YDGz to

E[DDp k JDj<:(diw+d,)2nrwp k Uij < D D Dp<r'wpk

remain independent and normally distributed. In this case, we condition the expectation of DD Pk on

the event that D < ( di. + dj. )2; that is, on the event that the units i and j are sufficiently

close that it is possible to achieve the defeat criteria against both targets using a single weapon of

type w. We make this correction in this case (preclusion with aggregation) since the unshifted DGZ

location is based on a linear function of D .

We can solve for E( D2pk I Di < (di. + dj. )2] by noting that if 0 denotes the angle
DPk

between the line segment connecting units i and j and the line segment connecting unit j with

preclusion area k, then
2 a2 2 _1 i jp p D?. + D pk - Dj P cs

2 cc D2 + Dp 2 a D D cos0 and D2  D2 + _ - 2i j  coskkD j )P k ij k Pk ii k
Thus

D2  a22 2 +o ~ k
2 =( 2 - a ) D2 + (D! -p a) + aDkD ij -' k

Also, r Wp k uii < DD Pk < r W P
k is therefore equivalent to

et r wp u i + (1-- )r 2w~ <_ c D p + (1-- a) D 2P < r wp + (ot ao2) (di. ° + d j w ) 2

sic aD2 + 1a (a 2 -a) D?. and r 2 U~ < D 2p implies both r 2 <

D2p and r 2  < D 2
WPt k1 - Dj P3
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Continuing our approximation that Dip, Djp and Dij are independent,
E[ j , < ( di, + dj. )2] , ( 2 - a ) E[ D 2 I D2 < ( diw + djw ) 2]

a rwpu + (1-a)rvpkU j -< aDp +(1-a) +

We note that if a variable U - N( p, a.2 ) is truncated above and below such that A < U < B.

then z -

E[ U IA< U < B ] + aB,

U

wlre Z(u) = i. e 2 and (D(u) is the standard normal integral evaluated at u.,4 2,'r

In the first expression, U = D2 B = ( di, + dj\, A = 0, p = E[ D2 ] and o Var[ D2,]

Thus 2 - diw + d )2]

E(Dj I Dij < ( di + d )2] = 14 + [(d + d")2 ] -

In the second expression, U = aDp+(1-o)D,2  A - arp U.+(1-a)rp V U B = 2
LU a Zk j Pk' -. k i Pk W A

+(a or)(d i + a)Ppk, and ou = ao 2 p+(1--C) o,2 The

conditional expectation is evaluated substituting U, A, B, p, and a in the formula given above.

Once 3 is estimated, then XDGZ and YDGZ can be computed and the separation from the

shifted DGZ to the unit locations i and.j can be determined. In this case, the shifted DGZ which

meets the preclusion area criteria is shifted too far away from target unit i or j to be able to engage

them as an aggregate target. The targets may be able to be engaged as single targets.

d. > r gpu. for all preclusion areas k, but D2p k < r2vp for ,ome k, and

(XbGZ - XiL )2 + ( YDGZ - YiL )2 < d2, and

XGZ - XjL )" + ( Yb'GZ - YL )2< jw

If this outcome occurs, the aggregate target formed from units t and j can be engaged with weapon

w. but the DGZ will need to be shifted away from the aggregate DGZ to coordinates (XGz"

YDGZ) which are at a distance rwp from the center of mass of preclusion area k. The mixing

parameter 3 is calculated as explained in the previous paragraph. In this case, the shifted DGZ is

not shifted too far away from target units i and j to be able to engage them as an aggregate target.
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Determining the Marginal Distribution of the Actual Ground Zero (AGZ)

Once the DGZ is determined, if a unit is engaged by a nuclear weapon, that weapon will be

aimed at the DGZ. However, the round will generally not impact at the DGZ due to inherent er:,rs

in the delivery system accuracy. The weapon system accuracy is described by a Circular Error

Probable (CEP) centered at the DGZ, where there is a 50% probability that the round will impact

within the CEP. Implicit within the determination of a CEP is an assumption that the round

impact point (Actual Ground Zero or AGZ) is distributed as a bivariate normal distribution around

the DGZ with equal variances in the X and Y direction and zero correlation. Also implicit within the

CEP is an assumption that the mean round impact point is the DGZ. If we assume that the DGZ

coordinates XDGZ and YDGZ have marginal normal distributions for any specified DGZ. the

coordinates of the AGZ associated with that DGZ are also distributed as normal. Let CXDGZ and

CYDGZ denote the delivery system error in the x and y direction, respectively, for the specified DGZ

located at coordinates ( XDGZ, YDGZ ). Then the coordinates ( X.4GZ, YAGZ ) of the AGZ are:

XAGZ = (XDGz+--CXDGZ ) -.- N(~ +PXDZ-1CXDGZ o.DZ q-O DGZ )
XAGZ - ( DGZ + CYDGZ ) - N( + /2 + 0Y2 )DGZ DGZ' XDGZ + DGZ

NOTE: Because of the CEP assumptions stated above, MCX = PCYDGZ - 0 and oCXDGZ -

0, 7YDGZ
.

Alternative Calculations

An alternative to numerical calculations or approximations for the probabilities of preclusion.

aggregation, etc. is to solve them through a statistical Monte Carlo approach. It is relatively easy to

generate a set of random variables that are jointly distributed as multinormal (Law and Kelton

[1982], see also Appendix C). Thus a simple statistical simulation can be set up, given the unit

template and variance/covariance matrices, that generates a complete set of unit locations per

replication. For each replication, the separation distances between the units and between the units

and preclusion areas can be calculated to estimate the probability that units are close enough

together to aggregate and are close enough to preclusion areas to cause a DGZ shift. In other words.

we can directly estimate quantities such as the following.

"prec( I I w, ai , agi) P[ n D > r i  ], the probability that the target unit will not be

precluded from engagement by weapon w.

"aggr( iI wa) { (D~ijd.,)fn(j available)f(fDip>rivPu) } w,a1 ], the

probability that the unit i will not be aggregated using weapon w.
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We can also estimate the probabilities of DGZ shift, etc. as outlined in the section in Chapter 3

on "Categorizing Possible Outcomes".

It is also possible to quickly determine if a unit can be defeated with a weapon w for each unit

in each replication (Chapter 3). This would be a function of aggregation and preclusion: obviously if

weapon w was precluded from engaging unit i in a replication, it cannot be used to defeat 1 in that

replication. The result of this calculation, averaged across all replications, is an estimate of

Pdeyeat( z I w) = P[ Unit i defeated I weapon w used ]

The probability that unit i can be defeated is

p 4,( i) = E P[ Unit i defeated I weapon w used] P[ weapon w used].
W

At first glance, this approach may seem the same as running a standard nuclear exchange

simulation model. The approach is similar, but offers many advantages over the simulation model.

First, the statistical simulation used here is very simple. No events, timing, acquisition, etc. needs to

be represented; the calculations consist merely of generating a set of correlated pseudorandom

numbers, calculating a set of distances, and comparing these distances to values such as rwp and

d,,, Second, we can easily break the calculations into parts, to determine intermediate results such

as Ppr.c( iI w, aj, adgi ), which enable us to gain a greater understanding of what is happening in the

model. Third, we can use these probabilities directly in simple probability calculations to determine

such values as Pdefeat( i ). The approach described in this paper allows us to see the sensitivity of

the results to various factors, such as acquisition, movement, location, weapon, preclusion areas, etc.

very transparently. Finally, once the calculations of location-based values such as

-Prpec( aj w, a1 , avg, ), "Paggr( d w, ai ), and Pdeet( a w) have been made, it is possible to perform all of

the analysis currently made using the detailed simulation models without having to recalculate these

probabilities. The reason this is true is that current simulation models, using manually generated

arrays or static templates, implicitly assume that the unit locations do not change over the various

excursions that are run using the model. We can make a much weaker assumption that the

distribution parameters describing the location of the units do not change, and proceed to run all of

the same types of analyses as can be run on the detailed simulation model.

An algorithm for estimating the probability parameters using Monte Carlo techniques is

provided in Appendix E.
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CHAPTER 3

MODELING THE IMPACT OF THE PROBABILISTIC ARRAYS

ON THE NUCLEAR EXCHANGE

Section 1. CHAPTER SUMMARY

Summary of Contents

In this chapter, we will determine the probabilities associated with each of the engagement

possibilities discussed in Chapter 2. Then, using the distributions of the actual unit locations and the

weapon AGZs, we will determine the probability that a given unit can be defeated using each type

weapon. A scheme of allocating weapons to targets is discussed resulting in a probability for -each

unit that a round of type w will be allocated against 'he unit. Finally, we will average across all of

the available weapon systems to yield the probability that each unit can be defeated. All

combinations of defeat / failure to defeat the individual unitq thus forms the set of all possible

outcomes of a nuclear exchange.

Summary of the Logic

In order to understand the probability structure, it is important to keep in mind two elementary

facts. If we denote events by A and B (an example of an event is the unit i being located at a

distance greater than the preclusion distance away from all preclusion areas, for a given weapon w):

(1) The Multiplication Rule: P[ A, B ] = P[ A I B ]P[ B ], where the notation "P[ A I B ]'"

denotes the probability of event A, given that event B has happened (or is true).

(2) The Addition Rule: P[ A] = P[ A I Bi ]P[ Bi] = P[ A, B i ], where the events 13i
alli all i

are exhaustive and mutually exclusive (that is, only on Bi can be true and at least one B i is true).

An example of the first rule is found in the probability that unit i can be engaged as a single

target with a DGZ shift. P[ unit i engaged as a single target with a DGZ shift I weapon w is used I

- P[ unit i engaged as a single target I weapon w is used and the DGZ is shifted ] • P[ DGZ is

shifted I weapon w is used ]. An example of the second rule is found in the fact that if a unit. is
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engaged as a single target, it must be engaged with a DGZ shift or without a DGZ shift - thus the

events of DGZ shift / no DGZ shift are exhaustive and mutually exclusive. The probability that unit

i can be engaged as a single target using weapon w is : P[ unit i engaged as a single target I weapon

w is used] -= P[ unit i engaged as a single target with a DGZ shift I weapon w is used ] + P[ unit i

engaged as a single target without a DGZ shift I weapon w is used ].

A particular notation is used to keep track of which events are of interest and which events are

given.

(1) Each unit i has a probability Pa i ( i) that it is available. If the availability is given, we use

the notation ai to denote this. The notation aij is used to denote the fact that both units i and j are

available.

(2) Each unit i may or may not be aggregated. If unit i is aggregated, the notation agg i is used.

If unit i is aggregated with unit j, the notation aggii is used.

(3) The DGZ for a particular weapon type may or may not be shifted. If the DGZ is shifted, we

use the notation s. The notation 7 is used when the DGZ is not shifted.

(4) Initially, we condition all of the probabilities on a particular weapon type w, denoted by w.

(5) We denote the opposite of an event (more technically, the complement) by a bar over the

notation. Thus for example " denotes "not s" or not shifted, and aggi denotes the event that unit

is not aggregated.

(6) We denote the opposite of an probability (more technically, 1 minus the probability or the

probability of the complement) by a bar over the "p" in tX.e notation. For example if

pprec( i I w, aj, da-i) denotes the probability that unit i is precluded, given that weapon w is used.

unit i is available and not aggregated, then prec( iI w, a, adgi ) denotes the probability that unit uis

not precluded, given that same information.

Recall each of the engagement probabilities from the previous chapter. If a target unit I is

available, then for a particular weapon type w unit i may be:
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(1) Engaged as a single target with no DGZ shift. We denote the probability that this occurs as

Pengage( ij:~ Iw).

(2) Engaged as a single target with a DGZ shift. We denote the probability that this occurs as

Pcngagc( i, 1 to).

(3) Engaged as part of an aggregate target (with unit j) with no DGZ shift. We denote the

probability that this occurs as Pengage( ij,-j w).

(4) Engaged as part of an aggregate target (with unit j) with a DGZ shift. We denote the

probability that this occurs as Peng.ge( ii, s tW).

(5) Not engaged. Since this will occur if unit i is precluded from fire by a preclusion area, wc

denote the probability that this occurs as pprec( i I w, aj, aggi). Unit i cannot be considered for

aggregation if it is precluded, so pprec( i I w, ai, agg i ) = Pprec( i t w, ai, agg i ) = 0.

In the chapter, we determine the intermediate probabilities (for example, the probability of a

single target DGZ shift pshjf( il w, ai, a-gi) ) step by step as shown in Figures 11,12, and 15 and

combine them to get the engagement probabilities for all weapons w. The probability that a rounid

of type w is allocated against unit i, denoted as PToufld( wl ai ), is used to determine the probability

that unit i is engaged (as one of the four engagement possibilities) and weapon w is used to engage

it.

Figure 15 shows how we can complete our determination of the defeat probabilities. For each of

the engagement possibilities, we compute the AGZ to actual unit location distribution and

determine the probability of defeat conditioned on that engagement possibility. Multiplied by the

engagement probability, this yields the probabilities Pdefeat( i, w, aij, ,agg i ), Pdefeai( i, w, ai, s, affg i ).

Pdefeat( i, w, aij, s, aggii), and Pdefeat( i, w, aij,, aggii ) that unit i can be defeated. At the bottom or

Figure 15, we also compute the probability that unit i is defeated as a bonus target by a round

aimed at unit j, for all j :0 i. We can add these probabilities using the addition rule to get,

Pdefeat( i, w), the probability that unit i is defeated and weapon w is allocated to engage it. If we

apply the addition rule once more, we can sum over all w to get the net probability that unit i is
defeated by a nuclear weapon, Pdeet( i).
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Summary of the Results

For a potential unit i, the intermediate probabilities of interest are:

(1) The probability that it is available, Pasva( )

(2) The probability that it will not be engaged as an aggregate target, - gr i I w, ai

(3) The probability that it can be engaged as an aggregate target with a unit j, Paggr( ij I w, i

Engage as single CP Compute AGZ to Subunitt, Subunit
targt. n shft CF-14.,Idefeated as a

tage. Gs If XAGZ AG2 [unitdistance defeated ? primary target

Engag as sngleSubunit i
aggregat target ... CEP Compute AGZ to Subunit) defeated as a

tuarntwt Z f roYGZ un i me defeated' bonusar target

aggrgat taret, CEP Compte GZ o Suunii YSubuniti

o defeated

Fiur X1., Loi fo eemigtedefeate Probablitie for Uni
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(4) The probability that the DGZ will not be shifted if it is engaged as a single target.

P,,o hift( iI w, ai , ag i ).

(5) The probability that the DGZ will be shifted if it is engaged as a single target.

Pshift( iI w, ai, a-g i ).

(6) The probability that the DGZ will not be shifted if it is engaged as an aggregate target,

Pno shift( iij w, aij, agg,,).

(7) The probability that the DGZ will be shifted if it is engaged as an aggregate target.
Ppft( ii I w, aij, aggii ).-

If a target unit i is available, then the probabilities that it may be engaged with a particular

weapon type w follow:

(1) Engaged as a single target with no DGZ shift.

Pengage( , I W) = Paait( ) Po shifi( i I w, ai, ag i ) • Paggr( i I w, ai )

(2) Engaged as a single target with a DGZ shift.
Pengage( i, SI W) = Pavail( i) * Pshit( w, , avgi) • aggr( il w, ai )

(3) Engaged as part of an aggregate target with no DGZ shift.

Pengage( ij, I w) = Pail(i) • Pamil(J) " Pno shif( ijj w, aij, aggii ) Paggr( ijf w, aij

(4) Engaged as part of an aggregate target with a DGZ shift.

Pengage(ij, sIw) = Pavail() '" Pavai(j) ' Phij(ijIw,ajj,aggj,) " Paw( ijlw, aij )

(5) Precluded from engagement.

Pprec(iI w, aja g i ).

Given the four engagement types (plus a bonus target possibility) for a particular weapon type

w, the following conditional defeat probabilities can be computed:

(1) Engaged as a single target with no DGZ shift.

Pdfelat(i I w, a, Ta-gi ) = P[ ( XAGZ _ Xi )2 + ( YAGZ - Yi )2 < dw ]

(2) Engaged as a single target with a DGZ shift.

Pdefeat( I w, a,, s, d-gi) = P[ ( XAz - Xi )2 + ( YGZ - Yi )2 < d1 .
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(3) Engaged as part of an aggregate target with no DGZ shift.

Pdefeat(i I w, aij, T, aggij ) = P[(XAGZ-X<) 2 +(YdAGZ-Yi)2 _d .

(4) Engaged as part of an aggregate target with a DGZ shift.

Pdefeat( i w, aii, s, aggii ) P[(X'Gz-Xi)2 +(ysGz yi)2 <di].

(5) Defeated as a bonus target for round aimed at unit j V j # i.

Pdeet(i I Jengaged, w, aj) = E P[(XAGz--Xi)2 +(YAGz--Yi) 2 < d].
all j6 i 

9W

The unconditional defeat probabilities can be computed directly from the above.

The remainder of this chapter simply presents the mathematics behind the probability

calculations.

Section H. DERIVATIONS AND RESULTS

Introduction

Up until now, we have computed the probability distributions for target locations, perceived

target locations, and the distribution of the DGZ given no shift from perceived target center or given

a shift due to aggregation and/or preclusion. If we simply wish to estimate the locations of the

DGZ's (assuming the target units were acquired and weapons are available for fire), our task would

be done. However, if we wish to extend the analysis to estimate the impact of the probability

distributions for the nuclear force arrays on the theater-level nuclear exchange, we must determine

the sample space of all possible outcomes of the exchange and determine the probability associated

with each possible outcome. In order to get results, it will be necessary to adopt some simplistic

heuristics for the joint probabilities of aggregation and precusion. Using these heuristics will enable

us to at least roughly estimate the impact of the unit locations on the nuclear exchange.

Point Targets

The methodology developed in this paper for area targets may also be used against point

targets. Point target defeat criteria are normally stated as an X% assurance that a point target will

receive a specified degree of damage, rather than an X% assurance that at least Y% of an area target

will receive a specified degree of damage. An equivalent way of expressing this point target criteria is
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to require an X% probability that the radius associated with the desired degree of damage will

overlap the point target. Another equivalent formulation is the requirement that the distance

between the DGZ and the point target is less than the radius associated with the desired degree of

damage with a probability of X%.

The last formulation is similar to the defeat criteria for area targets. If we define a point target

as a circular area target with an arbitrarily small radius, and a defeat criteria of 100% coverage, the

probability that this area target is defeated is the same as the probability of defeating the equivalent.

point target. Thus, we model all point targets as area targets with very small radii and apply the

methodology previously described.

Evaluating Joint Probabilities

Determining the probability of aggregation, and the probability that any pair of targets can be

aggregated, involves a calculation of the joint distribution of all of the separation distances between

units. This evaluation of joint probabilities also appears when we calculate the probability that one

or more preclusion areas may cause a DGZ shift or eliminate a potential target from engagement.

Our approach to this general problem is illustrated using the example of aggregation. We will use

the following notation:

Let D3 = [ XiL - [ - the squared distance between the perceived
Ij X, iL -~ YL ]

locations of units i and j.

Let diw = the maximum distance that a weapon w can be displaced from the center of

mass of a targeted unit 1 and still achieve the commander's defeat criteria.

Let dij. = the maximum distance between the center of mass of targets z

and j that will permit weapon w to be used to cover both targets

and achieve at least the commander's defeat criteria. Clearly,

dij, = diw + djw*

Let Gij. = 1 if D?. < d? - (thus targets i and j can be aggregated using w),

= 0 otherwise.

Let { Aj }7= denote the set { A1 , A2 , ... , Am }.

Let the subscript w (the weapon type) go from 1 to nw.

We also note the following inequalities: for any events A and B,

P( A n B) <min[ P( A), P( B ) I

max( P( A ),P(B)] P( A U B) < P( A) + P( B)

49



CAA-RP-89-3

Thus

P( noaggregation ) = P,_"n' , Gij= 1] { m I P[GjW N=1 ;thand

Pin . G,,l 0] w'l1~ i- Ij - fijfwj= fflU) m UW m
P( aggregation) P[ U Gi3,w = 1] E E P[ GjU = 1] thus

w1 sj=1W=1 ,,jl

nwl

max{ { P[ Gi 1 = ]}I, l =1 -< P( aggregation) _< ' P[Gju -- 11.
w=1 i,j=l

Note that unless m, nw, and the probabilities P[ Gij w = 1 1 are small, the upper bound will be

greater than 1 and thus trivial. We can also compute the following:

P[ only 1 aggregation (between units : and j) using weapon w ]

< minFP [ Gij w = 1], { P[ Gkj=w 0 }"1=_ : P[ Gj W = 1].
I (k, 1) 0 0ij)

Notice also that

P[ 2 aggregations between units ( i, ) and ( k, 1)] <min [ P[ Gijw = 1 ], P[ Gk w = 1],

thus

P[ 2 aggregations between units ( i, j ) and ( k, 1)] < P[ Gj w = 1], and

P[ 2 aggregations between units ( i, j ) and ( k, i)] < P[ Gkl -- 1=]

for any units i, j, k and I and weapon w.

As a result, we can provide an upper bound on the probability of aggregation occurring between

any units i and j using weapon w by simply looking at P[ Gij. = 1 ], which can be evaluated from

the marginal distribution of Dr,.

Let ( i,j,w )(1) -- { (Gi,j,w) I P[Gci,) 1] = max Pf Giju = 1] }. Let ( i,j,w04,w)1) Ii I. i w) (2)

denote the indices of the second largest probability of an aggregation, etc. We can order the upper

bounds on the probability that unit pair ( i,j ) forms an aggregate pair for all i,j,w as:

P[ G(Ii, )(1.) - 1 ] _> P[ G (i,w)(2) = 1] >! ... >_ P[ G(i,,w)(m)(M.1) = 1].-

We will use this approach to estimate which target unit pairs (i,j) to consider as aggregate targets.

If we approximate P( no aggregation unit i I w ) using its upper bound min{ P[Gij,, = 0] }rn

we can avoid the problem that can arise from independence assumptions. For example, suppose that

there are a very large number of units ( m = 100, say), with all of the units having expected (mean)
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locations far away from the expected location of unit i. We 'would expect the probability that

j> dijw for each unit j with a mean location far away from the mean location of unit i to be

very large, say 0.99. However, P( no aggregation unit i I w ) under independence is (0.99)100 = 0.37.

In actual arrays, the units locations are correlated and we would expect aggregation to occur very

infrequently, certainly less than (100-37) = 63% of the time! With independence assumptions,

adding units with locations very far away from the unit of interest can make the probability of no

aggregation very small, which contradicts experience. Using the upper bound of

rin{ P[GijW = 0] }' 1 , on the other hand, will ignore the units far away from the unit of interest

joi(only the unit that is the most likely to be close with the minimum P[Gij w = 0] is considered).

Some random distance pairs will be more dependent than others. The distances Dij and Di are

strongly dependent as they both involve the location of unit i. The distances Dij and DOl.

on the other hand, are less dependent as they are related only through the covarianccs

between i, j, k, and 1. If the distances are associaied (roughly speaking, having positive covariances).

then a lower bound for the joint probabilities is the product of the two (that is, the independent

case). We distinguish between the two cases in our heuristic rules for evaluating joint probabilities.

We also assume that there is a difference between evaluations of distances computed from different

random points for aggregation and distances computed from different fixed points for preclusion.

Our heuristic rules for evaluating joint probabilities are as follows.

1. For multiple comparisons of distances from the same point, use the upper bound of the

smallest distance. Example: P[ n Dp > r WP k  ] in{[ P[ D >r >r Jk..
k tk : k  W~k k l"

2. For multiple comparisons of distances from two different points, use the approximate

lower bound of tire product of the distances. Example:

P (dD, + dj )2 1 .n I r2>r 2

k k Wk hi 3
P[ D .< d i w + dP [ n D DP t  > r wl U i -

-P( D? < (diw + djw ] min{P[DD > r u

3. For comparisons between distances computed from different random points for

aggregation and different fixed points for preclusion, use the approximate lower bound of the

product of the distances. Example: Dii is the distance between the random points of the locations of
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units i and j (for aggregation), while Dip, is the distance between the random point of the location

of unit i and the fixed points of the preclusion areas (for preclusion). Example:

P[{ D P<( diw di +dd))2 { .Pn Inpkur.>}r]

P[ D3. < ( d + d )2 ]P 2.

:~:P[D~<(dw~djw)2 P[mnPD~p > rwp U ]}rP[ D3. < ( diw + d j. )2 ] • min{ P[ D~pk > rwPkt i ] k

Although these heuristics seem reasonable as approximations, the error of approximation is not

known. We are conducting some simulation experiments to verify these rules and estimate the error

of approximation.

Determining the Probabilities Related to Location

For every unit i, compute the following:

1. Calculate P.,ail( i), the probability that a unit i is acquired and retained as a target until

detonation, as explained in Chapter 2.

2. For every preclusion area k, compute P[ D~p > rw2 P U I and P[ Dip > rp 
3 k W kU. kP Wpk

a. Let Pprec( iI w, ai, dgg i ), the probability that the unit will not be precluded from

engagement, given that it is available, can be engaged using weapon w, and it is not suitable for

engagement as an aggregate target; i.e., D?. > ( diw + = or j was not available V j .

However, when we approximate joint probabilities, we assume that

P[ {n Dp >r 2p ln{Di>(diw+dj)2 P[ n D~p>r 2 p P[ ,(diw+dj.)2 ], thus
k k W k k k2 2 2w2 2

P[ n Dip >rwpk I = P[ Dip > r yp k ] and we ignore the conditioning

when evaluating P[ n D2 p > r2Wp k ]. Thus

"Pp'rec(I w , ai, ag i ) = P[ unit i will not be precluded I available, weapon w, D3. > d ]

Tprec(i Iw , a, aggi ) -- P[ D Dp > rwp u], bounded from above as:

,Ve(i W, ai, aggi ) --- min f P[ D p > r2  ) .
52Wkui
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b. Let p shift(i Iw, ai, adgi) be the probability that there is no shift in DGZ (due to

preclusion) for target i, given that weapon w is used, unit i is available, and there are no suitable

aggregate targets. By definition, if there is no DGZ shift due to preclusion, the unit i is not

precluded. As in -Pprec(iI w, ai, a-g i ), we condition on D?- > ( di, + d j )2 but ignore the

conditioning when evaluating the joint probabilities. Thus P,10 shift( i] w, ai, a ig) P[ no shift in

DGZ for target i] weapon w, i available, no aggregation] = P[ n D2p > r2W ]

pN, hift( iw , ai, agi) min { P[ D?, > r2 Pk

c. Let phift( i I w, ai, afgi ) be the probability that target unit i can be engaged as a single target

with a shift in DGZ due to preclusion, given that weapon w is used and unit i is available. Again.

we condition on no suitable aggregate targets, D , > ( diw + djw )2 but ignore the conditioninig

when evaluating the joint probabilities.

P~hif iw, ai,adgg) = P n D3, > P } P j
kP fln f nrDrp u.PPU nD 2

k I k k k Pk WPk

Phif( fw, ai, -g) .. min { P[ D2  > r 2  m i>
I'k WPkUi = }1 min [D2

Note that

p,hi.f( i w, ai, a-gi) + Po ,if( iI w, ai, a-gi)
2P[ n WP > rwp ui = 9pec( iiw, ai, d-ggi)

k I k Pki

3. For every unit j, j 0 i, compute P[ D?- < (d.+d , ,) 2 = d

a. Let Gij w  = 1 if Dj < d?,2 , given weapon w and both units i, j available.

= 0 otherwise.

Then

Thiggr( w I available ) P( no aggregation with weapon w I all units available)
=P[ n Gij = 01

i,j=l

jii

Pagg,( i available) m rin { P[ G, , = 0 17.=1

b. Let paggr( ij Iw, aij) be the probability that units i and j can be aggregated, given that

weapon w is used and units i and j are available.

paggr( ijI w, a,) a P[ D . di. + di. )2 1u, i, j available] P( G1 2w= 1]

53



CAA-RP-89-3

c. Let 'Pgr( iJl w, asj) be the probability that units i and j cannot be aggregated, given that

weapon w is used and units i and j are available.

P.ggr( ij Iw, aij) P[ D > ( di. + dw )2 u ;and j available]

= P[ Gij= 01 = 1 - paggr(ijIw, aij)

d. Let -haggr( iI w, ai ) be the probability that no unit can be aggregated with unit i, given that

weapon w is used and unit i is available. This can occur when D?. > d?. or when j is not available

for fire planning.

Pag( i I w, ai ) P( no aggregation involving unit i I weapon w, i available)

= P[t { i { ( d_< i (javailable) n ( n Djp: rwp u. Ic w, ai]

" P[fl,(Dii<dw) f (javailable) f (nDip _ rwpU) 1 w, ai]

15,,gg i m w, ai) rin - P[f(Dijl5 dij ) n (javailable) n n Dp> rwp U) w, a] }ail _
j .L ii.

-1 - max{ P[Dij < dij, Iw, aij ] • P[javailable] P[ nDIpk rWp w, aij] }_

I - max { Paggr( Ij w, aij) • Pavail(J) prec(j w, aj, dgg, ) }r=1

4. Find j such that j solves max{ Pggr( ij w, aij) • p,(il(j) prec(jI w, aj, i-g )}7 ,. This wvill

be the unit j that may serve as an aggregate target (along with unit i).

a. For the target pair ( i,j), compute the proportion a such that the aggregate target DGZ has

coordinates XDGZ = a XiL + (1 - a ) XjL and YDGZ = t YiL + ( 1 - a ) YjL" The formulas

for computing a were given in Chapter 2.

b. For every preclusion area k, compute P[ D -  > r and P[ DDP > rwp ], whereDpk k rvt i ]ad[Dpk k = 1 hr

= the distance from the unshifted aggregate target (XDGZ, YDGz) to preclusion area k- that

is, DDGZ-XP ) + ( YDGZ- )"
k k
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c. Let -prec( ijI w, aij, aggii ) equal the probability that both target units i and j are not precluded

from engagement, given that both are available, both can be aggregated with each other, and they

can be jointly engaged using weapon w. In this case, we condition on D?. < d?- . Thus

"prec( ijl w, aij, aggij) E P[ n { DDP2 > rwP n DD > WPU} }ID4 .< di.
k Dk W k iPk W U,) w

We approximate as

-5prec( ii I w, aij, aggii) --min P[ D2p > r iPU I D 2 < d3.] 'r

2-2

To evaluate P[ D 2Dpk > r'WPki I D3- < d?/ for any unit pairs izj, we recall that

D~ =( a2 - a) D3. + (1 - a) D2 p+

2 a2

We know that E[D 2 ] =( - a ) E[D,] + (1-a ) E[Dp] + a E[D 2 P] and it can be

shown that Var[Dp] =(c 2 C,-a)2 Var[D] + (1- )2  VarD-pk] + a 2 Var[D pk] +

+ 2(a 2 _a)aCovfD?.,D? ] + 2a(l-a)Cov[PkID, 2 . If .(J-) +-C'1[D13vDt 2'D .k I k k

make a simplification for the purpose of evaluation by assuming 1) that DDPis distrib

normally (i.e., use the normal approximation to the distribution of a quadratic form) and 2) that

D Dp, and Dp are independent, then DDp given D?- < d?. is approximately normal with:

:' JP~ kD kk U ) 9

Mean: (a -a) E[D 1 ) I ?< dii] + (1-a)E[D?p ] + aE[D?pk] and

Variance: (a 2 -a) 2Var[D.ID. < d?. ] + (1-a)2Var[D? ] + a2 Var[Dp ].

2)) t1 + 1 J k

To evaluate, recall that if a variable U - N( 1, o2 ) is truncated above and below such rhat

A < U < B, then

E[ U IA < U < B = # + o and_ [B
r- L ] tA-p

Var[U A<U~B ={l+ A~.~jZ[A-p] - [B-ii] z~

u 2

where Z(u) = e and $(u) is the standard normal integral evaluated at u.
27 5
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In this case, U = D 2 , A = 0, B = d3., u = E[D 2I and 0.2  Var[D .
i)

Once the mean and variance of DP given D? < d3.. is determined, then

p pk > r k uj ID~ j dj,] =

> r2pU. - EfD 2  7DW<d2 j

Pjz > k DbPk ID 2 for any ij, iaj, where Z - N( 0,1).

d. Let Pno shi(j w, aij, aggii) be the probability that there is no shift in DGZ (due to

preclusion) for the aggregate target formed from units z and j, given that weapon w is used, both

units z and j are available, and they can be aggregated with each other.

P,0 si~ft( ij w, alj, aggi,) S P[ n Dfpl > r VP ID2- < d4.,d]
k k k

• 2 >r 2 2 <d- np

k DP k WPk I D 4

This is evaluated as given in the previous paragraph.

e. For the aggregate target DGZ at coordinates XDGZ = oe XiL + (1 - O ) XjL and YDGZ=

a YiL + ( 1 - a ) YjL and the closest preclusion area k away from which the DGZ must shift,

calculate the mixing parameter 3 such that the shifted DGZ has coordinates XsGz = 13 XOGz +

( 1 - 3) Xpk and YDGZ - 3 YDGZ + (1 -3) Yp . The formulas for computing 13 were given in

Chapter 2.

f. Let pshifL( ij I w) be the probability that there is a shift in DGZ due to preclusion for the

aggregate target formed from units i and j and the shifted DGZ is still within the maximum off: ,

distances di. and dj., given that weapon w is used, both units i and j are available, and they can be

aggregated with each other. Let D 2  denote the squared distance between the perceived location o1"i Ds
unt 1 and the shifted aggregate DGZ; that is,

DD = (XbZ XiL )2 + ( YDGZ - iL )2

Pshft (0 w, aO , aggi ) =

P D p>r 2 pu } I D 2 >r 2 , }Cf{DD }{ D 2< 2IjD <d, 2 D2, < (12
56 r- jD'- <

56



CAA-RP-89-3

pshift(ijl w, aij, aggij )-=

n DDp >rp I D < d?] - P k> I D?. < d

prk k kU il k D2 <d2 . 1- Pk~ > k t - 4

PDD <d?2 n D O dj. }D3. < d -, .

The latter expression may be evaluated using Bayes' Law:

P[ D2Ds< d? D 2  
< d2  W.D < d

i~ -&W j 3 j 1 - zjwP[ D2 ' < d. ID *< 2 nD <d 2 1

- ,D D iD- I Dw n D 2 < dw] P[ D 2 < di n D 2  < d2w ]

P[D3 < 2V~i - dij]

P[D < d2 n _ d'I -{P( D iD- i> r D
2

D < pW
P[ D L < dD- d

p),hif(t w, aij, aggij ) --

mi~n ( P[ DDp > rvP Ui {D3. < di/-}.] - min P( D2  > r2p D<2w
kkV- o11 k- k D k ~ W kj

I. P[ D 2s < d32 n D?.a d?~

IP[ D?. < d?.

Note that Phift(ijlw, aj, aggij) + PnoshifI(ijj'w, aj, aggij ) _ P[ n DD P  > rWk ij

pr( iji w, ail ) due to the correction factor P[ DD2 <d? f s < 2 Dr2 < d2jw w.

Determining the Probability that a Target is Available for Engagement

For every unit t, compute the following:

1. Let P.,ngage( i, sI w) be the probability that unit i is available for engagement using weapon w with

a DGZ shift, given that weapon w is available to engage the target.

Pengage( z,s w) = P[ i engaged as a single target with DGZ shift w]

= P[ /available] P[{ nlDip_ rwp } { I D n > rwp ) w]
r {D. .k Pk k lD k

L) I (Djdj,)n( javailable )n( n Dip> rwVp u ) } }cW]

Pengage( i, sI w) = Paail( i) P ft( iI w, at, agi ) • aggr( ii tw, ai
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2. Let Pengage( i, s, w) be the probability that unit i is available for engagement using weapon w with

a DGZ shift.

Pengage~iS, w) = Pavaii(') ' Pro..d(wli) p ,hift( iw,a i,a-gi) • " g,( ijw, ai )

3. Let Pengage(i,-g1w) be the probability that unit i is available for engagement using weapon w

without a DGZ shift, given that weapon w is available to engage the target.

Pemgage( ii I w) = P[ i engaged as a single target with no DGZ shift w]

- P[ i available] P[ nDip > rwp I w]
k k k

P[4 U {(Dii<dj 1.)nf(javailable) n ( n Dp _ rWp )}} w]

Pengage( i,- I w) = Paail( ) Pno shift( 'I W, ai, Tgi) * Paggr( iI w, ai

4. Let Pengage( il, w) be the probability that unit i is available for engagement using weapon '

without a DGZ shift.

Pengage( ii-, w) = Pavail( i) P nd( Wk t) - Pno shift( il w, ail adggi) • "Paggr( il w, ai

5. Let Pengage( , SI w) be the probability that the aggregate target formed from units 1 and j is

engaged as an aggregate target with a DGZ shift, given that weapon w is used.

Pengage( ii, sI w) = P[ i engaged as an aggregate target with DGZ shift I w]

= P[ i available ] • P[ j available ]

*P[ {nDDp>rWpu I n{nDD > rvp }c I Dijjdjj. Iw, aij
k k ku ij k Dk k

* P[ { D tw<d2  ln{ D j<dw } I Di.<d.w, is, aw . P( D..<d.. I, aij

Pengage( ij, SI W) = Pavail() Pavail(J) " pshift( iij w, aij, aggi) • Paggr( i w, aij )

6. Let Pe,,,,( ii, s, w) be the probability that the aggregate target formed from units i and j is

engaged as an aggregate target with a DGZ shift using weapon w.

Pengage( ii, 8, w) = Pavail( i) Pail(J) " Prond( wI i,j) ' Phift( ij I w, a,, aggij) • Paggr( i1 w, a;

7. Let Pengage( 4,9 1 w) be the probability that the aggregate target formed from units i and j is

engaged as an aggregate target with no DGZ shift, given that weapon w is used.

Pengage( ii,- I w) = P[ i engaged as an aggregate target with no DGZ shift I w]

- P[z available]. P[j available]. P[{ l DDP - rwp n I Dij:diw I] w, aij ]
k k k

= P[i available] P[j available] • P[ n DDPk  r WPk I Dij < dij w, aij] P[ Dij < dijw I w, a]

Pengage( i,-" I W) = Pavail( i) Pavaii(J) Pno shift( ijI w, aij, aggij) • paggr( ijI w, aij
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8. Let Pengage( ij,7, w) be the probability that the aggregate target formed from units I and j is

engaged as an aggregate target without a DGZ shift using weapon w.

Peugage( 4, w) = P .. il( ') p' ,jj(J) ' Prod( wI ,j) • Pno hif( ij w, aj, aggii)

Pdggr( ijl w, aj).

Determining the Probabilities of Conditional Defeat

Let Pdefeat( I w, aj. , afggi) a P( unit i defeated I weapon ur no DGZ shift; i available: no

aggregation ] be the probability that unit i can be defeated as a single target, given that weapon w is

used, there is no DGZ shift, and unit i is available for fire planning. If unit i is engaged as a single

target with no DGZ shift, then the DGZ is located at the perceived target center, with coordinate-

XDGZ = XiL and YDGZ = Y/L" Using weapon w, unit i is defeated if (XAGZ - X )2 +

(YAGZ -Yi) 2 < d2 . Thus

PdefeatO( w, a3, adgi) = P[ ( XAGZ - X i )2 + ( YAGZ - Yi )2 < d? ]

Let Pdcf t(i I w, ai, s, a'gi) =- P[ unit i defeated I weapon w; DGZ shift; i available: no

aggregation] be the probability that unit i can be defeated as a single target, given that weapon it is

used, there is a DGZ shift, and unit ' is available for fire planning. If unit i is engaged as a single

target with a shifted DGZ, then the DGZ is located at the shifted coordinates XbGZ = ,3 XiL +

1 - )Xpk and YDGZ = OYiL + (1-/3)Ypk. Using weapon w, unit i is defeated if

(XGZ - X, )2 + ( yGz _ Y2 )2 < d_. Thus

Pdffa I w, aj, s, a-g) = P[ ( XAGZ - Xi )2 + ( Y'Z - ) 2 <d ..

Let Pdeje, (ij I w, aij, 7, agi) = P[ units i and j defeated as aggregate target I weapon i,: no

DGZ shift; ij available ] be the probability that units i and j can be defeated as an aggregate target.

given that weapon w is used, there is no DGZ shift, and units i and j are available for fire planning.

If units i and j are engaged as an aggregate target with no DGZ shift, then the DGZ is located along

a line segment connecting the perceived target centers, with coordinates XDGZ -= cXiL +

(1-a)XjL and YDGZ = aYL + (1-a)YL. Using weapon w, unit i is defeated if

(XAGZ-X.) 2  + (YAGZ-Yi) 2  < d2  and unit j is defeated if (XAGZ-Xj) 2  +

(YA GZ - Yj) 2 < d . Thus

Pde,,,t(zJ I w, ai, ", aggii )
= P( {(XAGz- Xi) 2 +(YAGz-Yi) 2 _d w fl { (X -X j )2 +(YGz _yj) 2 < d2 }I
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Let pdefjet(ij I w. aij, s, aggi ) P( unite! 4 Rnfd j defs;te$ as aggregate target I weapon w; DGZ

shift; ij available] be the probability that units i and j can be defeated as an aggregate target.

given that weapon w is used, there is a DGZ shift, and units i and j are available for fire planning. If

units i and j are engaged as an aggregate target with a DGZ shift due to preclusion, then the DGZ is

shifted from the point located along a line segment connecting the perceived target centers, with

shifted coordinates XDGZ = fi XDGZ + ( 1 - fi ) Xpk and YDGZ = 0' YDGZ + ( 1 - fi ) Ypk,

where the unshifted DGZ had coordinates XDGZ = a XiL + ('-a) XjL and YDGZ = a YiL +
(l-a) YL •Using weapon w, unit i is defeated if ( XGz - X i )2 + ( Y - Y )2 < d2 and

unit j is defeated if ( XG z - Xj )2 + ( YGZ.- Yj )2 _ d3 . Thus

Pdefeazj w, aij, s, aggii )

P[ {(x 4 -xi)2 +f(lA' < di < { (X1 G4 x )2 +-Xz-Y s) 2 < d2

Let Pdefeat(i I w, a,1 , -, aggij) P[ unit i defeated as aggregate target I weapon w; no DGZ

shift; ij available ] be the probability that unit i can be defeated as an aggregate target, given that

weapon w is used, there is no DGZ shift, and units i and j are available for fire planning. If units I

and j are engaged as an aggregate target with no DGZ shift, then the DGZ is located along a line

segment connecting the perceived target centers, with coordinates XDGZ = a XiL + (1-a) XjL

and YDGZ = a YiL + (1-a) Y jL Using weapon w, unit i is defeated if

(XAGZ - Xi )2 + (YAaZ - Y2 )2 < d?_. Thus
Pdefea(i w, a, , aggij ) = P[( XAGZ - Xi ) 2 +(YAGz - Y )2 -d- ]

Let Pdefeat( I w, aij, s, aggii ) P[ unit i defeated as aggregate target I weapon ur, DGZ shift;

ij available] be the probability that unit i can be defeated as an aggregate target, given that weapon

w is used, there is a DGZ shift, and units i and j are available for fire planning. If units i and j are

engaged as an aggregate target with a DGZ shift due to preclusion, then the DGZ is shifted from the

point located along a line segment connecting the perceived target centers, with shifted coordinates

XiGZ = fi XDQz + (1 - 0 ) Xp and Y'Dz = /3 YDGz + (1 - 13 ) YP , where the unshifted

DGZ had coordinates XDGZ = a XiL + ('-a) XjL and YDGZ = aYiL + (1-a)YjL" Using

weapon w, unit i is defeated if ( X'Gz - X i )
2 + (YtGZ i )2 < dx,. Thus

Pdefeat(' I w, aij, s, agii ) = P[(XAGz -X) 2 +(YSAGz -Y) 2 <diW
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Determining the Probability of Defeat

For unit i, there are three exhaustive and mutually exclusive outcomes:

1. Unit i is not engaged

2. Unit i is engaged as a single target

3. Unit i is engaged as an aggregate target

We will consider each in turn.

1. Unit i not engaged. This occurs when:

a. Unit i not available ( P a) ), or
b. Unit i is precluded from fire ( U U Dipk< rwp ) or

Wk k < k 2~ ,o

c. Round w is not available, for any weapon w not precluded

U nl Dip, rWpk u n w not available}
Uf k kf

Thus, unit i is not engaged when U { U Dip< rwp " w not available U i not availablef k U

2. Unit i engaged as a single target. This occurs when:

a. Unit i available ( Pavaii(i) ), and

b. Unit i is not precluded from fire ( u n Dip >_ rwp u)' and
wkk k U

c. Round w is available for any weapon w not precluded

(U fn Dip WJD rp nl w available

d. Unit i cannot be cagaged as an aggregate target with any unit j. This occurs when:
(1) Dij > dijw, or

(2) Unit j is not available (P1 ,6(j) ), or

(3) Unit j is precluded from fire ( U U Djp< rwpU )

Thus unit i can be engaged as an aggregate target with any unit j, given unit i available, i not.

precluded and w available, when

(D ij <d ij.) n (j available ) n ( n Djp _ r WpU

thus unit i cannot be engaged as an aggregate target with any unit j, given unit i available, i not

precluded and w available, when

{ D ij _< d ij) l (j available ) fl ( n Dpk W- r U ) } c.

Let us denote (XAGZ -Xi) 2 +(YAGZ-Yi) 2 as DAi. Given a weapon w, unit i is defeated as a

single target when

(DA i -< di. n i engaged as a single target w)
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with probability

P[ DA i < dij I i engaged as a single target, w]) P[ i engaged as a single target I ]

which equals

P[ D4 i _< di. I DGZ shift, i single target, w ] P[ DGZ shift, i single target I w ]

+ P[ DA i < di. I no DGZ shift, i single target, w] P[ no DGZ shift, i single target w wo]

Thus, P[ i engaged as a single target with DGZ shift I w] -

P[ { i available} n { n Dip/> rwp k UiD} n { Dip k < rwp }

N{ U { (Dij<_dj1 ,)n( javailable )n( n Djpk 2rwp kU).} Icw ]

=P( Iiavailable} n {fn{ Dip > rwp/=,} {UDip/<rwp}}

f{ { (Dij:5dijw)n( j available )n( n Djp> !rwp U )} Iw]

By assumption, the probabilities that i is available, that it is not precluded but the DGZ is

shifted, and that it cannot be aggregated with any unit j are independent given w. Thus

P[ i engaged as a single target with DGZ shift I w ]

= P[ iavailable] •P[n{ Dip rvwp kU} n { UDip <rwp } w, al

P[ { Y { (Dij<dijw)n( j available )n( n Dp > rwp U )U}. clw, ai]
I k kJk

-Paail(i) " p3hift(il w, a/,aggi) Paggr( :1w, ai )

Similarly, P( i engaged as a single target with no DGZ shift w] =

P[ {i available} n { nDipk > rwpk i} n {f Dipk 2: rwp }

k ' k kk k kI
fl{ U { (Di 1<d,.,)f( j available )fl( f Dpi= rpp u)} ) Cw, ai ]

- P {i available} n {f D i p r W P  k

nfl U { (Dij<dijw )n(javailable ) n ( n Djp : rWpk U. ) } I Itw, ai]

By assumption, the probabilities that i is available, that it is not precluded and the DGZ is not.

shifted, and that it cannot be aggregated with any unit j, are independent given w. Thus

P i engaged as a single target with no DGZ shift I w]

= Pt i available] P[fnDip rWp I W]

P[ { L { (Dj<di,,)n( j available )n( n Dip 2: rwpc u} I w,'ai]

= Pavail(i) • P,, ,hif, i1 W, a, -9 i) aggr( il W, ai )
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3. Unit i engaged as an aggregate target. This occurs when:

a. Unit i available ( P4 ,,ai1 (i) ), and

b. Unit i is not precluded from fire ( n D iPk> rwp k ui ), and

c. Round w is available for any weapon w not precluded, and

(U { n Dip - r w n w available)

d. Unit i can be engaged as an aggregate target with some unit j. This occurs when:
(1) Dj <_. dij., and

(2) Unit j is available ( Pa4,ajj(J) ), and

(3) Unit j is not precluded from fire (U n D ip r W p

Thus unit i can be engaged as an aggregate target with any unit j, given unit i available, i not

precluded and w available, when ( Dij _, dij) f ( j not available ) n ( n Dip >- rwp U ), and
k k k

e. The aggregate DGZ is not precluded from fire ( u n DDP > r wp, ui.j ), and
W k k kz

f. If the aggregate DGZ is shifted, the shifted DGZ must still achieve coverage over units 1
2 <d <d3w

and j, when( D D<diw ) - (1W jDs_ d

Recall that (XAGZ-Xi) 2 +(YAGz- Yi) 2 = DA i. Given a weapon w, unit i is defeated as an

aggregate target when

( DA i < di. n ij engaged as an aggregate target w )

with probability

P[DA i _ diw I ij engaged as an aggregate target, w] P[ ij engaged as an aggregate target Iw

which equals

P[ DA i -5 di,, I DGZ shift, ij aggregate target, w ] P[ DGZ shift, ij aggregate target I w]

+ P[ DA i < di. I no DGZ shift, ij aggregate target, w ] • P[ no DGZ shift, ij aggregate target I w]

Thus, P[ ij engaged as an aggregate target with DGZ shift I w ] -

P[ { ij available} n { Dip > rwp
k 'k wk i}

< J r l nI D 2  <d n I D I{DDP,> rwp u ij } n I{UDD/, k < wpk} .iD'- 3iw } {D1o<- }

n{ (Dij5djw)n( j available )n( n Dps> rwyp ) } I w]

Since { fDDp> rWp, .) { D 2  d n 12 <d}, } cannot occur unless

{ D 2 rwp Ui fl { n D P - rvp U.) occurs, we can drop the latter two terms.
Di, ki k jk k j(~If{2sdw: r w p} I U n D{< d

P[ {i available In{fn>DD-P > DP < D,<

n {D2< } fl {javailable} l { Dij_<dij, If w]
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By assumption, the probabilities that i is available and not precluded, that j is available and not

precluded, and the probability that the aggregate DGZ is shifted and that i can be aggregated with

unit j, are independent given w. Thus

P( i engaged as an aggregate target with DGZ shift I w]

- P[ i available] Pt j available ] •
<d }l{D 2Ds <d? }n{UDDP < rWp }n{Dij <dijw) w, aijp[f n DDP :_rwp u }f i) W D'-WD

k k k i1  D ' k k k
= P[ i available ] • P[ j available ]

.P[ {DDp >rwpU } n{ nDDp> rWPk}cIDijdij w I w, ai]
k k k i1  k k

*P[{Da< dw 2 fl{ D?~ 5d }I IDij:diw IwV P( Dij:diw I w, aiij]

= Paail(') ' pavai1 (J) Pshi ( Ijl w, a%, ggij) •p agg( ij w, a )

Similarly, P[ i engaged as an aggregate target with no DGZ shift I w] =

P[{ i available} n { nDip >_ rwpu l n {DDp > rwpl
k 'k k CO k k k

nf (Dij<_dijw)n( javailable )fl( n Dp> rwpkU. ) I 1) 1)]

Since { flDDP > rwp } cannot occur unless { fD.p> rwp i} f { f Dp> rwp .} occurs.
kk k k

we can drop the latter two terms.

Pt {i available} n {javailable} n {n DD p rwp,} n (: w)Iw

By assumption, the probabilities that i is available and not precluded, that j is available and not

precluded, and the probability that the aggregate DGZ is not shifted and that i can be aggregated

with unit j, are independent given w. Thus

P[ ij engaged as an aggregate target with no DGZ shift I w]

= P[ i available I P[ javailable] P[{ l DDP > rwpl n {w, aij

= P[ i available] P[ j available] P fl DD P > r wp Dij dij., w] • P[ Dij <5 dij, I w, aiI
k k )

= Paai( ) ,ail(J) " p,,, ij t aij, aggij) paggr( ijl w, aij )

4. Summary.

a. Given a weapon w, unit i is defeated as a single target with probability

P( DA i -< di. I DGZ shift, i single target, w ] • P[ DGZ shift, i single target I w ]

+ P[ DA i < diw,, no DGZ shift, i single target, w] • P[ no DGZ shift, i single target I w]

= Pdefeat( I w,ai, s, dg i) •PVil( P , ift( i I w, ai, a *gi -tzggr( iJw, ai )

+ Pdeteat(iI w, ai, -,ia g) • P i) " Pflo shift( il w. ai, adggi) - Paggr( ilw, ai
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b. Given a weapon w, unit i is defeated as an aggregate target with unit j with probability

P[ DA i < di, I DGZ shift, ij aggregate target, w ] • P[ DGZ shift, ij aggregate target I w ]

+ P[ DA , < di,, I no DGZ shift, ij aggregate target, w ] - P[ no DGZ shift, ij aggregate target I w]

= Pdefeat(0 I w, aij , s, aggij ) • Paaii( • Pav~il(J) " Pshift( ijI w, aij, aggij) •paggr( iji w, aij )

+ Pdefeat( i I W, aij , -, aggij ) ' Pavail( ') • Pavail(j) " PnO shift( ijj w, aij, aggij ) • paggr( ij w, aij )

c. If we select j such that j solves max{ paggr( ijl W, aij) Pavai(j) - Pprec(jj w, aj, gg, ) 1j=L

then pengage( il w) = Pavail(i) -prec(il w, ai, dgg i ) I - Pavail(J) pprec(jw, aj, dggj

paggr( ijI w, aij) ]. We note that the event with probability Pprec( ijI w, aij, aggj) implies the events

that have probabilities Pprec( I I w, a,, d'gi ) and "prec(jI W, aj, d'gg, ) (i.e., the lack of preclusion of

the aggregate target ij implies the lack of preclusion of the individual targets i and j). If we

approximate

pegag( ij w) = Pa,,ai( i) Pavail(J) [Pno shift( ijI w, a,, aggi, ) + Phif i w, a, agg 1 )]

Paggr( ijI w, aij) with

Pengige( ijl w) = Pavai( i) Pavail(j) "prec( il w, ai, dggi ) "prec(jl W, aj, d'gg,

Paggr( ij w, an), then

pengage( itO) + peOgag( ij Iw) = P,,,il(i) prec( i Iw, ai, ggi ).

In other words, the probability of engagement of unit i as a single target or as an aggregate

target (given w) is approximately the probability that the unit is available and not precluded. The

actual probability of engagement given w will be slightly less, due to additional requirements for an

aggregate target to be engaged (the aggregated DGZ must meet both preclusion and minimum

coverage requirements).

Allocating Weapons to Targets

We are interested in the probability Prond( wl ai), the probability that weapon w is available to

engage target unit i, given that unit i is available, and the probability Prod( wl aij ), the

probability that weapon w is available to engage target units i and j (as an aggregate target), given

that units i and j are available.

Because the number of potential target units is much larger than the supply of available

weapons, the probability that a weapon w can be allocated to an acquired unit i depends not only on

the unit's priority as a target, but also on the actual number of other target units of equal or higher
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priority that are available as potential targets. The weapon allocations, therefore, are highly

dependent between units. We can estimate the marginal probabilities properly, taking into account

this dependence, using either of the two approaches given below.

Given any realization of the target unit set available for planning from all units i and aggregate

pairs ij, it is possible to determine an assignment of weapons w such that the greatest number of

high priority targets are engaged. This allocation can be accomplished using any doctrinally defined

allocation scheme or a standard "assignment" type linear programming (LP) code. Unfortunately.
2

there are 2 m possible combinations of m2 binary variables representing the defeat / fai!ure to defeat

each unit, so it is not feasible to determine all possible weapon allocations for each potential target

unit for large m.

An estimate of proud(wiai) can be formed by drawing binary random variables using tile

probabilities Pengage( ijI W) -- Pengage( ij,- I W) + Pengage( ii, sI W), for all unit pairs i,j = 1 ... , m.

For those units i,j where the binary variable for engagement as an aggregate target is zero. draw

another binary variable against pengage( kI w) = pengage( k,T I w) + Pe,gage( k, sI w), fc.r k = 1. j.

Assign available weapons within range (based on some allocation scheme such as top-down or

bottom-up yields) to the targeLs with positive binary variables, continuing until all available

weapons are assigned. This forms an estimate of the joint probability P( unit i is available for

engagement using weapon w and weapon w is available ]. If we repeat this process n times, we

average out Pengage( il w) and pengage( ii w) and form estimates Pround( wI ai ) and Pro,,d( W[ aij ) of

P,.nd ( wI a, ) and Prond( wI aij ) respectively.

In developing a Monte Carlo estimate of the probability (by weapon type) that a round is

available for a given target unit, it is necessary to draw against the probability that the target unit

is available for fire. Let is denote the event that unit i is engaged as a single target and let ia denote

the event that unit i is engaged as an aggregate target. P[ is I = P[ { i available} n { nDipk>
W~~~~~~~k~~ k ~ -I *k ~pu i

rw }  n (Di,<d, w)n( j* available )n( n D. > rp pngge(i,- I)

+ Pengage( i, SI W) = Pengage( i JW), where j* maximizes { Paggr( ijl w, ai,) Pa,ait(i) " prec(j

w, a, a~g) 1. Similarly. P[ ia Iw] = P[{i available} In {DDP > rwp Ui* I { DDs<diw } n
I' Jk k k

{ D O <d2* W} n {j* available} n { Di*,<dij* W I I W] = pengage(i,-1 w) + pengage(zi,sI w)

pegdgl( iiI W). P[ is U ia I w = P[ is I w ] + PI 'a I ] - P( is n i. I wI
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Note that

P[ is n ia Iw] P[{{iavailable}n{nD, rwp ku} n (D. . )n( j* available

n ( n D. > rWP U . J n {iavailable} n nDo rw p ,k j* -k- k i"j f k k "k'i

fl { D. ,<d? }n{ Di.* <d.2* } f {j* available} l { D..*<d.., } } w}

which includes the terms { D.., < d.., } n { j' available }f { nD., > rwp U.*} n
Jk I k  k

{ { fDD > rwp, u..j} n {j* available} n { Dij*<di* W } If we continue to assume that

{ n DDp > rwp UI.} implies { n D,* >_ rwp U. 1, then we have a probability statement of
kk k U'* k k j

the form P[ Ac n A ], which equals zero. Thus P[ is U ia 1 w I = P[ Isi w ] + P[ ia I w ] =

Pengage( il w) + Pengage( ijl w). In practice, we always determine a single j for each i such that j

maximizes f Paggr( ijj w, aij) * Paaii(JIl w) ' pprec(jI w, aj, adg 1 ) }, so there is only one target unit )

to consider as an aggregate target for each unit i.

To develop a Monte Carlo estimate of the probability (by weapon type) that a round is

availablt for a given target unit, we begin by generating realizations of single and aggregate targct

sets. To do this, we draw against the probability that the target unit is available for fire as follows:

ALGORITHM:

1. For each target unit i, i = 1, ... rn,

2. Draw U i ,- Uniform( 0,1 ).

3. For each weapon type w, w = 1 ... , nw,

4. Using j maximizing { lgaggr( ij[ w.a2 ) • pa,il(jI w) . pec(jI w, aj, a7g 1 ) },
if U i < Pengage( il w) + pengage( ijj w), let B( i, w) = 1

5. Also if U, < pengage( iI w), let A( i, w) = 1

6. End if

7. End loop on w

8. End loop on i

9. The available target set is generated as follows:

If B( i, w) = 0, target unit i is not available for fire

If A( z, w) = 1, target unit i is available for fire as a single target

If A( i, w) = 0 and B( i, w) = 1, target unit a is available for fire as an aggregate target

Some alternative approaches involving bounding the probability that a weapon w can be used to

engage unit i exist but may not yield sufficiently tight bounds for the purpose of estimation.
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Formulas for the Probability of Defeat, Given Weapon W

Let Pdeleat(ZI w) = P[ unit i defeated I weapon w ] be the probability that unit i is available

and can be defeated, given that weapon w is used. Thus we are averaging over the probability that

unit i is available, that it is engaged as a single or aggregate target, and that the DGZ is or is not

shifted.

Pdefeal(' W)

= P[ unit i defeated as a single target I w ] + P[ unit i defeated as an aggregate target I w]

= P[ DA i --< di. DGZ shift, i single target, w ] - P[ DGZ shift, i single target I w ]

+ P[ DA i :- diw no DGZ shift, i single tarcet, w ] • Pf no DGZ shift. i single target w]

+ P[ DA i< di,, DGZ shift, ij aggregate target, w ] • P[ DGZ shift, ij aggregate target w w]

+ P[ DAi < di. no DGZ shift, ijaggregatetarget, w] P[ no DGZ shift, ijaggregatetarget I w]

pdatlm! w)

= pdefeat(i w,a i, s, agg) • Paail() Phi(ilw, ai, agg,) •aggr( ilw, ai )
+ pdefeat(' w, ai, s, alg,) • Pavai(i) pno ( i[ w, ai, agi) .Paggr( i I w, ai )

+ Pd~eat(' w, aij, s, aggij) Pavail(i) Pavail(J) " Pshif( ijI w, aij, aggij) paggr( ijj w, aij

+ Pdefeat(' w, aij, S, aggi) Paai() Pavail(J) Po sAif( iJI w, al,, aggi,) , paggr( iii w, aij )

Pdeat(l W)

= Pdefeat(i w, ai, s, adgi) Pengage( i, si IW ) + Pdefeat(' I w, al, -7, affgi) Pengage( 2,7 1)

+ Pdefeat(' w, aij, s, aggij) • Pengage( :j,sI w ) + Pdefeat(' I Wa,, , , aggi) • Pengage( ij,- I w

Estimating the Probability that a Unit is Defeated

Given the estimate of the probability that a unit i is available for engagement by weapon ,v.

paail( iI w), and the probability that weapon w will be allocated to that target, Prond( WI ) it is

possible to estimate the probability that a unit is defeated. When the number of rounds available is

constrained, the probabilities of defeat are dependent between the various units, wit!- a joilnt

dependence that depends on the total numbem of higher priority units being defeated (that is, the

probability that unit i is defeated given that many higher priority units a -e defeated is less than the

marginal probability that unit i is defeated). However, this generally becomr- a problem only when

we look at extremes, where almost all or almost none of the units are available for engagement. The
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effect of this dependence will be to alter the joint probability of many events across the theater, but

it should not change the determination of the modes within partitions of the sample space (Chapter

1), nor will it be important when examining smaller subsets of units. Caution in interpreting the

joint results of a laydown should be exercised when using this approach as a detailed model

surrogate.

If we consider the probabilities independently between units, we can estimate the probability

that any unit 1 can be defeated as follows. Let pdefeat(i, w) a P[unit i defeated using weapon w] be

the joint probability that unit i is available and can be defeated using weapon w. In this case, we

remove the conditioning on weapon w.

Pdefeal(0 w)

= { Pdeet( I wa i, s,ag i) • Pa(1) ' Phift(iw, aidag i) -aggr( iw, ai)

+ pdft(diw,aij,-gag i ) • Pavail() PNo hift( il w, ai, aggi) pagg( il w, ai) }
. Proud( w I ai)

+ { Pdefeat(i 1 w, aij, s, aggi)• Paazil( Pavail()" P'hift( iIJ w, aij, aggii) Paggr( ij w, aij

+ Pdefeat(lI w, aij,-Y, aggij) Pavai() Pavail-(J) Pno hift( iii w, aij, aggi2 ) Paggr( I w, aij )

proun( w lai )

Pdefeat( , W)

- Pdefeat(' W, ai, s, a7gi ) • Pengage( i, s, w ) + Pdefeal(i w, ai,, agg )• Peengage( i,', W

+ Pdjelat(i w, a1j, s, aggij ) Pengaage( ii,s, w ) + Pdfeat(' I w, aij, 7, agg2 ) Pengage( i1g, w

The probability that unit i can be defeated, denoted as Pdefcat(i), is simply

pdefeat(i) = , P[ Unit i defeated using weapon w ] or

Pdefeat(Z) E Pdefe.(i, w).

Bonus Effects

If desired, the probability that a unit may be defeated can be adjusted to include bonus effects.

that is, the probability that unit i is defeated due to a burst aimed at unit j or aggregate target jk.

Let ( XAGZ, YAGZ ) denote the coordinates of the AGZ for the weapon fired at unit j, and let

D2AC = ( XAGZ -  ) + ( YAGZ7- \i )2. The coordinates ( XA , Y ) will depend uponi
iA (XA - +( AGGJ.-.' 7 AGZ ) Ildenduo

whether j was engaged as a single or aggregate target with or without a DGZ shift. Thus
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Pdefeat~~1 A"ZI, w ) P[ D 2AGZ d, 2 AGZJ wt] and

Pdefeat( l AGZJ, w ) = P[ D 2  < d 2  w, a, s, agg s

+P[ DiAGZ j - IW t, ap T, dig 1 J Pengage(J,T, W)

+PtDAGZ <  i .AGg k, w
k 1w I a,, a , ] Pengage(ik, s, w )

+ P[ D2AG z  < d2 w, a ,j, agk Pngage(j, u)

The total probability of defeat will be

Pdefrat() = F pdefet 1, W ) + T_ p re(i, AGZ1, w )Pdefal ) P=1 a

It is anticipated that, although bonus damage may be realized, the probability that a u1it, i'

defeated due to bonus damage will be very small, and normally may safely be ignored.

Estimatng the Sample Space of All Possible Outcomes of a Theater Nuclear Exchange

If we regard the outcome of a theater nuclear exchange upon each unit from the requirements o

the defeat criteria, we can define the outcome of the exchange on unit a as a binary variable (),.

where O, = 1 if the unit is defeated, 0 otherwise. Given the assumption that the outcome is

independent between units, the outcome of any exchange is simply a set of O's and l's wr Ithv

probability that any O, = 1 equal to pd~f,.t,(), the probaLility that unit i is defeated, i = i.

Given m units, there are 2' possible outcomes.

Generally, the commander will desire at least a certain percentage of units be defeat.'] in ord,'r

for the employment of nuclear weapons to be considered effective. We can define another hinliry

function of the random variables 0, o( 0 ), such that o( Q ) = I if the commander's objective 1e

triet ) otherwise. Clearly o( 0 ) is iiondecreasing in Q. The function o may be regarded as i(lenti al

to a structure fiuction of a coherent system in reliability theory (Barlow and Proschan [19811 ): tmh,

we can use results from coherent structure theory in our analysis of the nuclear exchange issue.

For example, if any k out of m units must be defeated in order for the commander's object ,. ,

be met, ( 0_) = ( 0) 0O 2 . Ok ) ll ( 0) ()2 O k _ 0 1+ 1 ) l ( O,-k --1 o )

for -ill possible subsets of size k from the m units. I < k < m,

where ( x1  ll[ x, I - ( I - x, )( 1 - x)
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Furthermore, we can bound P[ 0 Q ) = 1] by ( Barlow & Proschan [1981] p. 31 ):

max IT P[O,=I] P[¢(Q)=1]< min I] P[O=1],
1 < r < npath iEPr 1< s < ncut iEK

where P, denotes one of the npath =( ) possible min path sets (in this case, a min path set is

any set of k units), K, denotes one of the ncut =( n ) possible min cut sets (in this case, a(m-k+l

min cut set is any set of m-k+1 units), and _L Xi = 1 --- (1-Xi). If we let po(z) = P[O i = 1].
a /

and number the units such that po(l) < po(2 ) _< ... < p,(m), then

m m-k+I
max 7- P[ 1 =1] = IT po(i); min _IL P[O=1i = IL poO.

1 < r < npath iEPr :=-k+l 1 < S < ncut iEK, i=1

This example shows how we can estimate (through bounds) the probability that the

commander's objective may be met. It may be the case, however, that it makes a difference in the

battle that follows the nuclear exchange which units are defeated in the exchange. Or, more simply.

it may be how many units are defeated across the theater which makes a difference.

For example, suppose that there are 20 opposing divisions in a sector of combat. Our best

judgement, given the tactical and operational situation, is that the defeat of at least 7 divisions out

of the 20 will be required to avoid loss of territory (stabilize the FLOT - which may be the

commander's objective). However. if 14 or more divisions are defeated, an opportunity occur. not

merely to stabilize the FLOT but also to conduct a successful counterattack. In this case, if 0, = 1

of division i is defeated, i = 1 .... 20, there are 220 possible outcomes. We can partition the sample

space of possible outcomes into the 2 outcomes where 6 or fewer divisions are defeated, the
13,~ k=o k /~20 ) outcomes where 7 or more but less than 14 divisions are defeated, and thek

outcomes where 14 or more divisions are defeated. From each of the three partitions so created, one

realization can be selected to be used as input to a theater-level combat simulation such a,

FORCEM. FORCEM or a similar model will then be run three times using each of the three nuclear

outcomes as an input. If our assumption about the impact of defeating different numbers of divisio-

is correct, the three battles simulated in FORCEM using different outcomes should yield noticeably

different results. The response surface estimated using these three FORCEM runs should provide a

better representation of the variability possible in theater-level combat where nuclear weapons are

employed than a random selection of three possible outcomes from the 220 possible (and certainly

better than selecting a single FORCEM run).

Estimating the sample space of all possible outcomes as part of the input to a low resolti lmi

deterministic theater-level simulation is discussed in more detail in Youngren [1989c].
71_ -- i-



CAA-RP-89-3

CHAPTER 4

SUMMARY

In this paper, we have provided a model for representing tactical nuclear warfare at the theater

level. It provides either an analytic or a Monte Carlo solution to the representation of the effect of

the exchange on each potential nuclear target. In doing so, the model addresses two current

Droblems in modeling nuclear weapons exchanges at the theater level.

The first problem is the identification of the locations of small, lower level units, such as

companies or battalions, within theater-level conventional scenarios or models which track units at

the divisional level. When target aggregation and preclusion are considered, the actual location

attributed to these units will make a difference i-l determining what weapons may be used to engage

which units in the theater.

The current approaches to identifying these small unit locations are to either specify stylized

arrays or templates, based on doctrine, which are then applied to all divisional-sized units, or to

manually generate a single, specific array. Both of these approaches fail to take into account the

variability inherent in the actual locations that might be realized in any specific battle.

Our solution to this problem is to treat the small unit locations as unknown, and to describe our

uncertainty about these locations through probability distributions. We start with prior multinormal

distributions for small unit locations based on expert opinion, and then update that information by

generating many different array realizations. We carry forward these distributions to account for the

possible shifts in Desired Ground Zero (DGZ) due 'o target location errors, aggregation. and

preclusion. Errors in weapon delivery systems are accounted for through the distribution defined by

the Circular Error Probable (CEP) and are matched with the DGZ distributions to form

distributions for the Actual Ground Zeros (AGZ) for nuclear weapons that may be employed within

the theater. From the distributions of the AGZ and the unit location, the distribution for the level of

damage achieved against the unit can be derived.

The second major problem lies in the interface between theater-level nuclear analyses. which

may use the probabilistic arrays developed above, and theater conventional battle sin-alatiois.

73



CAA-RP-89-3

which tend to be expected value models. An expected value model demands a single input to

represent the effect of a nuclear exchange, which is carried forward into simulation of the post-

nuclear battle. However, a theater-level nuclear exchange may generate many different outcomes

which will have a significantly different effect upon any post-nuclear battle. We use the probability

models developed in this paper to estimate sets of possible nuclear exchange outcomes, which can be

partitioned into sets that have a significantly different effect on the conventional battle. The

expected value simulation can be run several times, once for each set of outcomes, to capture tile

variability inherent in the nuclear exchange and predict the effects of that variability upon the

conventional battle.

The probability models described in this paper may be used in three different ways. First. they

may be used as a research tool to estimate the sensitivity of exchange outcomes to the various data

and assumptions included in the model. Second, they may be used as a surrogate for detailed.

complex simulation models of nuclear exchanges such as NUFAM III. Finally, the models may he

used to estimate the sample space of all possible outcomes of a theater nuclear exchange to decide

which outcomes should be provided to theater-level expected value models.

Implementation

In order to implement the model, we begin with the steps given immediately below. These are

followed by procedures which vary, depending upon how the model is to be used.

1. Based on a conventional theater-level scenario, or the output from a conventional theater-

level model, determine the appropriate time to model the use of theater nuclear weapons. This is n

judgment that becomes part of a study or analysis framework.

2. From the conventional theater-level scenario or model output, extract information on

major unit (e.g., divisions) locations and strengths. Determine the appropriate parameters to use to

model the acquisition and movement within the timeframe of the nuclear exchange. These may he

generated from a separate model, using the scenario at the time of the exchange (for additiot;l

information, see Youngren [1989 b,c] ).

3. Match the appropriate multinormal distributions to each of the major units in order to

describe the probability distributions of the locations of the subordinate units (e.g., companies and
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battalions). The distributions will be based upon a doctrinal template for that unit, which specifies

the mean locatiuas for the units, and variance/covariance matrices generated from expert opinion

and data gathered from manual arrays.

a. Use as a Research Tool

If we are going to use the model as a research tool to estimate various paiameters pertaining to

specific units and see how these parameters vary with different input data, assumptions, etc., we

would continue to implement the model as follows:

1) For the units of interest, use the procedures contained in this paper to calculate measures

of interest such as Pengage( i, s1 w), Pengage( i,f w), Pengage( iij, s w), and Pengage( ij,- I w). This can

either be done directly, using the procedures outlined in Chapter 3, or through a Monte Carlo

estimation technique (Appendix E). The input data and assumptions can be varied as desired to

determine the impact on these measures.

2) For the units of interest, determine the probability that unit i can be defeated, pdejea(.

This can either be done directly or through a Monte Carlo estimation technique. The input data and

assumptions can be varied as desired to determine the impact on the defeat probability.

b. Use as a Surrogate for Detailed Simulation Models

If we are going to use the model as a surrogate for detailed simulation models to estimate the

effect of a nuclear exchange, we can implement the model as a stochastic simulation:

1) Use the multinormal probability distributions for unit locations to generate realizations of

actual and perceived unit locations.

2) For each unit, draw against the probability P,.aij that it is acquired and can be retained

as a target at least until the time of detonation. The procedures for calculating these probabilities

may be found in Youngren [1989a,b].

3) For the acquired units, determine if they can be engaged by various weapons w, taking

into account aggregation and preclusion issues.
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4) Allocate the available weapons against the realized set of available targets, using any

preferred allocation scheme.

5) Draw against the weapon reliability and delivery errors to determine the AGZs for the

weapon. Assess damages resulting from detonations occurring at those points (a further draw may be

made against the probability of a "dud" round, if desired). For each unit, determine if it was

defeated.

6) The results of the damage assessment represent the effects of the exchange against

targeted units, and may be analyzed accordingly. As a stochastic simulation, this process should be

repeated multiple times with different random number streams.

Alternatively, we can use the model as a surrogate for detailed simulation models using the

probability estimates:

7) For each unit, determine the probability Pavail that it is acquired and can be retained as

a target at least until the time of detonation.

8) Use the procedures contained in this paper to calculate measures of interest such as

Pengage( 2, S i w), Pengage( i, 1 W), pengage( ij, S w), and Pe,9age( ijJ I w). For accuracy, we recommend

that a Monte Carlo estimation technique be used. This estimation procedure need only be performed

once, provided that the distributions of the unit locations do not change. Use the P a.ail probability

to help determine the target unit pairs to be considered for aggregation.

9) Using the probabilities that the units are available for engagement, determine tihe

probability that unit i can be defeated, Pdefea(i). This can either be done directly or through a

Monte Carlo estimation technique.

10) As an alternative to step #9 above, we can generate a realization of an engagement list

by drawing against pe,ngage(ilw), Pengage(ijIw), and Pavai(i). We can then allocate weapons

against this realized set and assess damages. As we are dealing with a single realization at this point.

this part of the analysis should be replicated.
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c. Use to Generate Inputs to a Theater Level Expected Value Model

If we are going to use the model to generate inputs representing the effects of a nuclear exchange

into a theater-level expected value model, we would implement the model as follows:

1) For all units, use the procedures contained in this paper to calculate measures of interest

such as pengage( i, s w), Pengage( ii- I w), pengage( ii, s I w), and pengage( ij,"9 I w). This can either be

done directly or through a Monte Carlo estimation technique.

2) For all units, determine the probability that unit i can be defeated, Pdefeat(i). This caii

either be done directly or through a Monte Carlo estimation technique.

3) Aggregate the probabilities that each target unit can be defeated into the probabilities

that each larger unit represented in the theater-level model (e.g., divisions) can be defeated, using

defeat criteria established in the study or analysis. This establishes the space of all possible outcomes

of the nuclear exchange (in terms of the binary defeat events).

4) Partition the space of all possible outcomes of the ruclear exchange into sets (strata) that

we expect to lead to significantly different outcomes at the theater level.

5) Select the modal outcome from each strata to determine which units should be acquired.

retained and be available for fire planning.

6) For each strata, generate a realization of an engagement set, such that the units available

for eng - -,nent are defined by the modal outcome from the strata.

7) Allocate the available weapons against the engagement set of targets, using any preferred

allocation scheme (Appendix F).

8) Draw against the weapon delivery errors to determine the AGZs for the weapon. Assess

damages resulting from detonations occurring at those points. For each unit, the AGZ is constraineil

to the defeat outcome determined in the selection from the strata.
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9) The results of the damage assessment represent the effects of the exchange against targeted

units that will be provided to the theater-level expected value model. This realization is used to

represent the effects of all possible outcomes within the strata from which it was selected.

10) Repeat steps 6 through 9 for each modal outcome from each strata.

Conclusions

The procedures outlined in this paper may be used in a variety of ways to analyze the effects of

possible theater nuclear engagements. Three advantages are realized from using these procedures:

First, the uncertainty surrounding the precise locations of the targeted units is explicitly accounted

for through multivariate probability distributions. Second, the proposed procedures form a model

that is significantly less complex than the detailed simulations currently used to perform theater

nuclear analysis, and these procedures may be applied incrementally to single units without having

to run an entire simulation. Third, it is possible to construct an experimental design to estimate the

variability in FORCEM ouputs.

These procedures will be implemented at CAA in a model called NEMESIS, which may be used

as a stand-alone model or may be used to prepare input to the agency's theater-level combat model.

FORCEM.
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APPENDIX B

PROBABILITY DEFINITIONS

Probabilities relatcd to target acquisition and movement

Pa,4 i1 ( z)

Let Pavail( i) be the probability that a target unit i is acquired and retained as a target until

detonation, and is stationary if required.

PavaiI P[ Yr > Td - tp I acquired at time tp ] P[ acquired at tp ] •{ pt

where I = 0 or 1 depending upon the requirement for the unit to be stationary at the time ot

acquisition.

a. No Capability Exists to Observe the Target after Acquisition

Pavail " P[ Yr > Td-tP I on acquisition list at t p md stationary at A]

* P[ unit on the acquisition list at tp] P[ unit stationary at A]

where A is the time the target was acquired

b. The Target is Observed Periodically after Acquisition

Pavai = P[ Y, > Td-tp I on acquisition list at tp and stationary at T,

* P[ unit on the acquisition list at tp I • P[ unit stationary at T, ]

where T, is the last time the target was observed prior to time tp

c. The Target is Observed Continuously after Acquisition with Preplanned Fire

Pavail = P[ Yr > Td - tp I on acquisition list at tp ] • P[ unit on the acquisition list at tp

d. The Target is Observed Continuously after Acquisition without Preplanned Fire

Paail 1 Pacq

We have the opportunity to hit a unit if it is available for fire and it is stationary at time Td at the

place where it was last observed.
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a. No Capability Exists to Observe the Target after Acquisition

Phit = P[ Y, > T, - tp on acquisition list at tp ] • P[ unit on the acquisition list at tp

P[ Ys > Td - A I stationary at A ] P[ unit stationary at A]

b. The Target is Observed Periodically after Acquisition

Phlt = P[ Y, > Td - tp and Ys > Td - T I on acquisition list at tp and stationary at T,

. Pt unit on the acquisition list at tp ] P[ unit stationary at T, ] ,

c. The Target is Observed Continuously after Acquisition with Preplanned Fire

Phit =- P[ Y, > Td - tp I on acquisition list at tp ] P[ unit on the acquisition list at t,]

. P[ Ys > Td-tpl stationary at tp ] . P[ unit stationary at tp ].

d. The Target is Observed Continuously after Acquisition without Preplanned Fire

Phit = P[ Y, > Td - T Ion acquisition list at Tf P[ unit on the acquisition list at Tf

{ P[ Y,>q I stationary at tp I . Pstay

+ P S > r7 1 stopped at Tf] . P[ Ym < L-} I moving at tp • Pmove }

Probabilities related to location

-ro(i! w, ai , Cggi )

Let 1prec( iI w, ai, d'ggi ) equal the probability that the unit will not be precluded from

engagement, given that it is available, can be engaged using weapon w, -nd it is not suitable for
engagement a an aggregate target; i.e., D2 > ( d.w + d = d) w or j was not available V jo i.

However, when we approximate joint probabilities, we ignore the conditioning when evaluating

P( n D P > r 2wp ]. Thus
k P k Wk

- Prec(z I W, a, ag )- P[ unit I will not be precluded I available, weapon w, D - > d2>2  2 .

j~pre, w, a,, a~gg = P[ ( nD? > rwpu 3, bounded from above as:

"Pprec(ZI w. ai, ag i ) min{ P[ D3p > r P U pI "

15.ggr( w available )
2 2

Let Gi,, = I if Di j < (diw+djw )2 = dij. , given weapon w and both units z. j available.

= 0 otherwise.

iggr( w I available ) P( no aggregation with weapon w I all units available)

- min{ P[ Gj, = 0] }i~j=
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Let aggr( i I w, ai ) be the probability that no unit can be aggregated with unit i, given that

weapon w is used and unit i is available. This can occur when D 2 > d? - or when j is not available

for fire planning.

Taggr( i w, ai ) P( no aggregation involving unit i weapon w; i available

SP[ { { ( Dii < dijw) n (javailable ) n ( f Dp> rwp . I I w, ai]

= P[ n ( D ij < d ij ) n ( j available ) n (nl DJp> rwpk U. ) } w, ai]

=min{ P[ f D,1 < dij,) n (available) n ( n q ! rwp U.) }CIt, =1 }

m min{ 1- P[( Dij d ,,) n ( j available ) n ( n Dp rwpku. ). w, ail }M=

joi

1 - max{ PD <d ijIw, aij] P[ j available P[ n Dp !rwp .Vuw, ai}j
k k kJ j]

-1 -4,x{ Paggr( ij w, a21) * Pvai(i) • prcc(I w, a1, dg) j

1 i

pgg( ijI w,, a )

Let Paggr( ii I w, a,,) be the probability that units i and j can be aggregated, given that weapon

w is used and units i and j are available.

Paggr( Ii t w, a,1 ) P[ D?. < ( di. + dj. )2 1 w; i, j available] = P[ Gij,= 1]

-Pagg( ii I w, a )

Let laggr( iji w, aij) be the probability that units i and j cannot be aggregated, given that

weapon w is used and units i and j are available.

Pggr( 1jI w, aj) P[ D 2 > ( di,,, + dj1 )2 t w; i and j available]

= P[ Gijw ] = - paggr( ijl W, aij )

P,o shift wlt, ai, ag-g i)

Let Pno shift( [ Iw, ai, a4gi) be the probability that there is no shift in DGZ (due to preclusion)

for target i, given that weapon w is used, unit i is available, and there are no suitable aggregate

targets. By definition, if there is no DGZ shift due to preclusion, the unit i is not precluded. As in

pr.c(:i w, a, a-gi ), we condition on W. > ( di w + dw )2 but ignore the conditioning when

evaluating the joint probabilities. Thus Pno shift( ZI w, ai, agi) P[ no shift in DGZ for target ,i

weapon w, zavailable, no aggregation ] P[ ) DP > r2WP

P,no shi t( 'I w. ai, agi) min{ P[ D-p > rw2 p ]P }I __
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Pshit( w, ai, dg i )

Let Pshi( ii w, ai, agg i ) be the probability that target unit i can be engaged as a single target

with a shift in DGZ due to preclusion, given that weapon w is used and unit i is available. Again,

we condition on no suitable aggregate targets, Di2 > ( di. + dj. )2 but ignore the conditioning

when evaluating the joint probabilities.

_--p[ D~p >r lDi ] -P[ D~p > 2~k]

p ,r}p ]P[ WP
Pshift(I w,ai, dg) -min{ P[ Dp > r2 cpu ] }U , - min P[D > r] k1

Note that Pshilt( i]w, ai, afg) + P,0 shilt( ilw, ai, afgl )
k k k z k'kI

= P[ DW P > rW PkU] - prec(ilw,aidgg)
kee jl k, aUt kgg k k

Let prec( 2i1 w, , agg,) equal the probability that both target units and are not precluded

from engagement, given that both are available, both can be aggregated with each other, and they

can be jointly engaged using weapon w. In this case, we condition on DI w ,

k k Pk k

where Dp =the distance from the unshifted aggregate target (X DGZ' YDGZ) to preclusion are&

kthat is. D2  = XG _) ~G )?. We approximate as
O k _( DZ_ pk )24 DZ Yk"0 prec( :iI wi, ai, aggi)

Let -p,1 c( i I w a,, agg, ) ea the probability that thrge t ui n it ind Z ae tno precluin

for he ggrgat trgt forme-d fro unt and- j, give tha d weapon wn iu, bhnt and foj: r)

are available, and they can be aggregated with each other.

2 2pr0 Ac( w, as, agg ) P[ fl D~ > r~p n D, > r~i

min{ P[ DP > rkp I DD' _d2

Bi -

whrB h itnefo heusitdageaetre XDZ DZ opelso rc
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p, ift w, a, aggi,)

Let Phifi(ijlw) be the probability that there is a shift in DGZ due to preclusion for the

aggregate target formed from units i and j and the shifted DGZ is still within the maximum offset

distances diw and djw, given that weapon w is used, both units i and j are available, and they can be

aggregated with each other.

Pshift('jI w, a2j, aggj) :=

2 >2 j n D 2 p,,p >rl 2 , }Cr{ D 2 <d 2 }n{ D 2 D,<d~ ~
_( P i k k . - WII D.

p,hij (ij Iw, a, aggj)= [P[ n Dip>r.p U I D?- < d?,,j - P[ n D2  >rwp D. < d
P _ dD t D,,] - Pd n 3h , _ d j

P [ D 2 < d2 2 D 1? d J JS D d < d DD ],

-,IDs dI~ P[ 1W, )D d i -
1.e[ 2 2 2dk i]I d- P DD. < d n D= < d?

wh( w, a ) due to the correction factor P[ 2 < d 2 1D3. d 2 1 D 2

DD -_ dw D' D -j d ) ] P[W < dw]

Probabilities related to weapon allocation

Let Pround( wI aij) be the probability that weapon type w can be allocated against unit i. given

that unit i is available.

~~~1 WIa 2

Let I w aj a2 ) be the probability that weapon type w can be allocated against the aggregate

target formed from units i and j, given that the aggregate target formed from z and j is available.

Probabilities rf engagement

pemgage( i, sI w)
Let Pengage( i, s w) be the probability that unit i is available for engagement using weapon w

with a DGZ shift, given that weapon w is available to engage the target.

ptagrge ( i,sr w) = P[ i engaged as a single target with DGZ shift I n ]

L P[ iavailable ]. P[{ tuipt> rwp u}f{lable forD ew nu epwi

w P[ { U { (Dij:_diw)n( j available )nl( n Dpt wp ) } IcJ] w]
Pengage( 1, S I w) "-- Pavail( i Pshift( i I wq, d-ag ) • - agg,( i I w, ai)
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pc,,gtgc( :S, W)
Let Pengage( z, s, w) be the probability that unit z is available for engagement using weapon to

with a DGZ shift.

Pengage( ii s, w) "Pai( Pzhil( i I w, ai, ag ) • Paggr( :l w, ai ) Proud( w l ai

Pengage( i,T I w)

Let Pengage( z,7 w) be the probability that unit i is available for engagement using weapon w

without a DGZ shift, given that weapon w is available to engage the target.

Pengage( , 1 1w) -- P[ i engaged as a single target with no DGZ shift I w]
r'- P iaailable] P[n Dip> r wp I W]

P[ { Q (D? di. )fn( i available )fn( n D > rw u) }, C I W

Pengage( iTI W) Pail( i) Pn shift( iI tO. ai, agi) Taggr( il w, ai )

Pengage( ij Wo)

Let Pengage( i,-, w) be the probability that unit i is available for engagement using weapon ic

without a DGZ shift.

pengage( i,, W) = Pavail( i) P hift( i w, ail ag ) • "faggr( i I w. ai  Prord( w I a.)

Pengage( i, sI W)

Let Pengage( ii, s w) be the probability that the aggregate target formed from units i and j is

engaged as an aggregate target with a DGZ shift, given that weapon w is used.

Pengage( ii, sI w) = P[ i engaged as an aggregate target with DGZ shift I w]

- P[ i available ] - P[ j available ]

.P[ {DDp krwpki } I nfl{ ( DDp rw p }c Dijdijw I w, aij]

P[{ D D <d2 2  D<d 2}) ij:d,,,, w, aij]• P[Dij<dij, 1w, aij]

Pengage( isl w) = Paail(') • pavail(j) • Ph( ij w, a2j, aggj) Paggr( ijl w, aij )

pe,gage( ij, s, W)

Let Pengage( i0, s, w) be the probability that the aggregate target formed from units 1 and } is

engaged as an aggregate target with a DGZ shift using weapon w.

Pengage( ij, S, to) = Pavail( z) * Pa, 4il(j)

Phift( jIw, aij, aggij Paggr( ij Lw, aij ) Pround(wIaij)
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Peugage( ij, I W)

Let Pengage( ij, 1 w) be the probability that the aggregate target formed from units i and ) is

engaged as an aggregate target with no DGZ shift, given that weapon w is used.

Pengage( ij,7 I w) = P[ i engaged as an aggregate target with no DGZ shift I w]

= P[i available] P[j available] P[{ DDPk>_ rwpk n { Dij-dj }. w, ai]

= P[i available] P[j available] P[ n DDDij< dijw, w, ]j • P[ DjIf < dij. I w, a,]

Pengage( ij, w) = Pavail( i) - Pavail(J) - p.,, iJ w, aij, aggij) Paggr( ij w,

Pegage( ij,-3Y, W)

Let Pengage( ij,-!, w) be the probability that the aggregate target formed from units 1 and j is

engaged as an aggregate target with a DGZ shift using weapon w.

Pengage( ij,"§, w) = Pavail( ") * Pavail(j) " Pro.nd( wl aij,) p , ip( i j w, aij, aggij
paggr( ii w, aj)

Probabilities of conditional defeat

Pdfefte( i I w, ail 7,, agg i)

Let Pdefeat(' I w, ai, "T, agi) P[ unit i defeated I weapon w; no DGZ shift; i available: n1o

aggregation ] be the probability that unit i can be defeated as a single target, given that weapon w is

used, there is no DGZ shift, and unit i is available for fire planning. If unit z is engaged as a single

target with no DGZ shift, then the DGZ is located at the perceived target center, with coordinates

XDGZ = XiL and YDGZ = YiL- Using weapon w, unit i is defeated if (XAGZ -Xi) 2 +

(YAGZ -Yi) 2 < d2_. Thus

PdefeatOi I w a, s, agg ) - P[ ( XAGZ - X i )2 + ( YAGZ - Yi )2 dWi

P defet( ' 1 t, aiI s, adgg i )

Let Pdefeat(i I w, ai, s, a-gi) P[ unit i defeated I weapon w; DGZ shift; i available; no

aggregation] be the probability that unit i can be defeated as a single target, given that weapon w is

used, there is a DGZ shift, and unit i is available for fire planning. If unit i is engaged as a single

target with a shifted DGZ, then the DGZ is located at the shifted coordinates XbGZ = 3 XiL +

(1-03) Xp k and Y-DGZ = 0 YiL + (1-0l) YP .* Using weapon w. unit, i is defeated if
( GzX, ) 2 + (yqGz-i) 2  ~ Tu

(X tGZ - AG Z - Y) < d? .Thus
p21., ,,, ) P ( VA 7i )2 + ( yA Z _ i )2 1
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P'leat( ij I w, ai, ", aggi, )

Let PdefeatI( I w, aj, 7, a-gi ) E P( units i and j defeated as aggregate target I weapon w; no

DGZ shift; z,j available ] be the probability that units i and j can be defeated as an aggregate target,

given that weapon w is used, there is no DGZ shift, and units i and j are available for fire planning.

If units t and j are engaged as an aggregate target with no DGZ shift, then the DGZ is located along

a line segment connecting the perceived target centers, with coordinates XDGZ = a XL + (i-)

XL and YDGZ = a YiL + (-a) YIL Using weapon w, unit i is defeated if

XAGZ _ Xi )2 + ( YAGZ - Yi )2 < dl . and unit j is defeated if ( XAGz - X) )2 +

YAGZ - Yj )2 
< d 2 Thus

Pdefeat(3i w, ai, s, afg i )

P( {(XAGZ_Xi) 2+(YAGzyi) 2 <d}2 f n(XAG2 -X ) 2  _y)) 2  } I

Pdefe,,(ij I W, ai, s, aggij )

Let Pdefeai(?j I w, ai, s, a-g i ) P[ units i and j defeated as aggregate target I weapon w; DGZ

shift; :j available] be the probability that units i and j can be defeated as an aggregate target.

given that weapon w is used, there is a DGZ shift, and units i and j are available for fire planning. If

units i and j are engaged as an aggregate target with a DGZ shift due to preclusion, then the DGZ is

shifted from the point located along a line segment connecting the perceived target centers, with

shifted coordinates XDGZ = 3 XDGZ + (1-3) Xpk and YDGZ YDGZ + (1-) Yez.

where the unshifted DGZ had coordinates XDGZ a X i  '-a) XjL and YDGZ = a YiL +

(1-a) Y.L Using weapon w, unit I is defeated if (X z - ' + (YSAaZ -Yi) 2 < d 2 and unit

j is defeated if ( VA -- Xj )2 + ( Y.A(Z - Yj )2 < d_. Thus

Pde fi(ea w, s, 4 g0 i )
P1 I{(XAGZ--)+(YAGZ-Yj)2" < diw } n I (XAtGZ-X A )+Yt -- _ djW}

Pdefeat( i i wai,-,aggij)

Let pdfeat( I w, aj, s, a-gi) P[ unit i defeated as aggregate target I weapon w; no DGZ shift:

atj available ] be the probability that unit i can be defeated as an aggregate target, given that

weapon w is used, there is no DGZ shift, and units z and j are availai,- fc- fire planning. If units i

and j are engaged as an aggregate target with no DGZ shift, then the DGZ is located along a line

segment connecting th- perceived target centers, with coordinateq X rg;z and Yr, , gi', -t

previously. Using weapon w, unit i is defeated if (XAGZ - Xi )2 + (YAGZ - Yi )2 < d 2. Thus

pdefeat(i I w, ai, s, agg ) - P[(XAGz-Xi) 2 +(YAGz-Yi) 2 <diW

B-8



CAA-RP-89-3

Pdefca i I w, ai, s, aggii)

Let Pdfat(z I w, ai , s, aggi ) P[ unit i defeated as aggregate target I weapon w; DGZ shift; ij

available] be the probability that unit i can be defeated as an aggregate target, given that weapon w

is used, there is a DGZ shift, and units i and j are available for fire planning. If units i and j are

engaged as an aggregate target with a DGZ shift due to preclusion, then the DGZ is shifted from the

point located along a line segment connecting the perceived target centers, with shifted coordinates

X*DGZ = 13 XDGz + (1-3) XPk and YDGZ = 13 YDGZ + (1- 13) YPk' where the unshifted

DGZ had coordinates XDGZ and YDGZ as given previously. Using weapon w, unit i is defeated if

(XGZ - Xi )2 + ( Y~az - Yi )2 S d2 _. Thus
Pdefeat(iJ I w, ai, s, ag i ) = P[(XsGz--Xi) 2+(YGz-Yi) 2 <di

Probabilities of defeat

PdePa('i I W)

Let Pdefeai(il w) - P[ unit i defeated I weapon w ] be the probability that unit I is available

and can be defeated, given that weapon w is used. Thus we are averaging over the probability that

unit i is available, that it is engaged as a single or aggregate target, and that the DGZ is or is not

shifted.

Pdefe('l w)

= P[ unit i is defeated as a single target I w ] + P( unit i is defeated as an aggregate target I w]

= P[ DA < di, DGZ shift, i single target, w ] • P[ DGZ shift, i single target I w ]

+ Pf DA i di. no DGZ shift, i single target, w I J P[ no DGZ shift, i single target I w ]

+ P[ DA i< di.I DGZ shift, ij aggregate target, w ] P[ DGZ shift, ij aggregate target I w]

+ P[ DA. < diw no DGZ shift, ij aggregate target, w] P[ no DGZ shift, ij aggregate target I w]

pefeat0 iw)

= Pdefeat(i w, ai, s, a4ggi) Pavaii( i) Pshift( il w, ai, ag gi) • "aggr( i Iw, ai

+ Pdefeat( i w, ail , sdggi" Pa,,.il(i" Pno shift iw, ai, agg9i " "Taw-r iw, ai )
+ Pdefeat(' w, aij, s, aggii) "Pva i) Pail(J) "Phi( ijl w, aij, aggij) npaggr( ijW, aij

+ P, " , a 'S , aggi 3 ) " Pa )• Pavaii(J) p.,Ajt( ':j w, aij, agyij) • pggr( ,j; , aij

Pdefea i w)

= Pdefeat('i w, ai, sl a7gi) .rn g,( i, sl W ) + Pddf,j(i I w, ai, 7, a9gi). Pengage( i,- I )

+ Pdefeat( w, aij, s, aggi ) Pengage( ii, s I W ) + Pdefeat(' I w, aij, -, aggij ) * Pengage( Ii I )

B-9



CAA-RP-89-3

Pdefet('' W)

Let Pdefeat(' w) P[ unit i defeated using weapon w I be the probability that unit I is

available and can be defeated using weapon tv. In this case, we remove the conditioning on weaponl

W.

Pdefeat( zW)

= d,,( I w, aj, s, dgg2) Pavail((') -p~h 2ft( ilw, aj, aggi) aggr( il w, a2

" Pdefeai(' w, aj, -§, adg9 Pavai( i) pn0  Ajj ii w, aj, affgg ) gg-( il w, a2

" Pdefeat(? iv, a2 j, s, agg2 1 ) Panaui( Pa) l~j p~hi( j wv. aij agg22 ) Paggr( jiw, a22
+ Pdefeatil w, ajJ aggi2 ) Pavaii( ) Pavjail(j) Pn0 shift( 01l W ai,' agg22) Pczggr( i01w, ai2 )

Pdcfeat( ' iv)

= Pdfeet(Z wv, aj, s, aggi ) Pengage( i, s, iv ) + PdefC~t(Z Ivw, aj, -9, a-gg ) Peizgage( 47~, w)

+ Pdefeat(? wv, a21, s, ag 22  Pengagc( V3, S, w ) + Pdefeat(' I w, a21, 7, agg21 ) Pengage( ijJ, tv

Pdefeati)

Let Pdefet('~) be the probability that unit iis defeated using tactical nuclear weapons.

Pdfepat(i) = P[ Unit zdefeated using weapon wv

Pdefeat0l) = Pdqejat iv)
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APPENDIX C

MULTINORMAL DISTRIBUTIONS

Section I. UPDATING THE MULTIVARIATE DISTRIBUTIONS FOR UNIT LOCATIONS*

The Multivariate Normal Distribution

We use the following notation to specify the m-dimensional multinormal probability density

function, or pdf:

f(x E)= 2, 2IF12e

where p =( P1, A2 .. , un )t is an m-dimensional known mean vector and E is a ( m x m ) -

dimensional positive definite symmetric variance-covariance matrix. We define a matrix R - E-1.

R is referred to as the precision matrix of the distribution. p is assumed known but R is assumed

unknown with a multivariate Wishart prior.

Multivariate Wishart Distribution

If S1, ... , S, are a random sample of m-dimensional random vectors with mean vector 0 and and

m x m variance/covariance matrix E w, and V is defined such that

vI s , s[
i=1

then the random matrix V has a Wishart distribution with n degrees of freedom and parametric

matrix E w, where n > m - 1 and E w is nonsingular. For any m x m matrix v which is symmetric

and positive definite, the pdf of v is:
n (n-rn-1)

f(v I n, Ew) -= c Iv1 iV, 2 exp{ _ tr( E v ) },
2

where tr( E 1 v ) denotes the trace of the matrix E- v and the constant c is equal to:

c =[2. 4 7n+1- )}-.k= 2 2

* Material in this section has-been extracted from DeGroot [1970]
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Obtaining the Posterior Distribution

DeGroot[1970, pp. 176,177] provides the following result: Suppose that X1, ..., X, are a random

sample of rn-dimensional random vectors with a specified mean vector m and and an unknowni

value of the m x m precision matrix R. Suppose also that the prior distribution of R i. a Wishart

distribution with a degrees of freedom and precision matrix r such that a > rn-1 and T is a

symmetric positive definite matrix. Then the posterior distribution of R. when X xi ( i = 1.

n ) is a Wishart distribution with a + n degrees of freedom and precision matrix r*, where

n
r r + (xi-m )( xi-m

i"-1

We can use this result to easily update the posterior distribution of the unknown precision

matrix R. of our multinormal distribution for the X and Y coordinates of the actual unit locations.

given data X1, ... , X,, and Y1, ... , Y,. that represent n vectors of manual array locations.

Obtaining the Prior Distribution Without Data

If the initial (prior) distribution cannot be specified by an expert in arraying, then a

noninformative prior distribution can be used. In essence, a noninformative prior for the precision

matrix R is an improper Wishart distribution with a = 0 degrees of freedom and precision matrix

r = 0. Therefore, given a random sample of data vectors xj, ... , x,, the posterior distribution of R

is a Wishart distribution with n- 1 degrees of freedom and precision matrix r*, where

r* = E (xi-m)( xi-m

If R is distributed as Wishart with n degrees of freedom and precision matrix r (thus

variance/covariance matrix r-1), then the expectation of R, E[ R] = nr- 1.For our multinormal

distributions used in our probability model for the actual unit locations, we use the multinormal pdt"

given the known vector of unit mean locations ui and the estimated variance/covariance E =
[nr-i]-i = r.

f(x [
Rx 2 e-p21 -e ( x - pa x - p X < <
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Obtaining the Prior Distribution With Data

If the initial (prior) distribution can be specified by an expert in arraying, then a proper Wishart

distribution will be used. We assume the variables X to be distributed as multinormal ( E, ,

where p is known (the templated mean locations) and E = E[ R - 1 ]. From the Wishart

distribution, we know that E[ RI = (a+n) r - 1 . Thus r, = E[ R- 1 ] = E[ {(a+n) r*- I - 1}

I r. The updating formula given on the previous page will be used to obtain the posterior

Wishart distribution for R.

Section II. GENERATING MULTINORMAL PSEUDORANDOM VARIATES*

Procedure

Let X = ( X 1 , X 2 , .... Xm ) be an m-dimensional vector of random variables with a joint pdf

f~x/4' Er)= 2-,r ]E-

Then X can be represented as

X=CZ+,

where C is a unique lower triangular matrix solving E = C C t .

Let ci, and o'i denote elements in the ith row and jth column of C and E respectively. Thel,

Algorithm LTM from Fishman is used to compute C.

Algorithm LTM

1. a = Y1

2. For i= 1, ... , m, ci1 =

3. a2 

4. Cii = ['ii - E Cj

5. If i = m, stop.

6. Otherwise, i = i + I i-I
or- E cil cjl

7. For j= 2, ... , -i, c= 1=-

8. Go to 4.

* Material in this section has been extracted from Fishman [1978] C-3
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Generating Multinormal Pseudorandom Variates

To generate m-dimensional vectors x from a multinormal distribution, given pa and E, algorithm

MNI from Fishman is used.

Algorithm MN1

1. For z = 1. m, generate N(0,1) pseudorandom variates Zi.

2. = I

3. X, =pi + L ci Z)
.tI

4. If - m, stop

5. Otherwise, i = i + 1

6. Go to 3
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APPENDIX D

DISTRIBUTIONS FOR QUADRATIC FORMS IN NORMAL VARIABLES

Johnson and Kotz [19721 discuss approximations to quadratic forms in normal variables. If we

define F,,( q; A, _ ) = P[ Q( Z ) < q ] for given n, then we can establish approximations for

F,( q; A, 0 ) (the central case) and F2 ( q; A, w ) (the general case).

Notation

n
Q(Z ) = F Aj ( Z1 - w)) 2 , where Z, - N( 0,1).

F.(q;_, ) = P[Q(Z ) <_q]
D2 = D 2 . + D2 .. = a2 z + " + O 2 )2

Z37 Ytj _ Zi ( ij  + Yij zYij +- )

Zk}, - N( 0,1 ) for k = z, y.

Ak = trkij for k = x, y.

S= ij for k = x, .

For the perceived unit location ( XiL, YiL ),

rij - A pzi + pti - p - tz
1 - ( + + + -

guj +I t33 Z7 ti)z 'V'
A Yij U Iyi +"J" AtYi - AYj - Atyj )

2,). 0,2 + 0r .: + 0r 2 9

The Central Case

If we consider the special case where all w = 0, and we order our A's such that A1 > A., hi

we can find F 2( q; A, 0 ) using a result by Rubin [19601:
) '2 2 R2 p[ <")

F,( q; 2A, 0 ) = P[ ( r2 ) <  ] - P[ ;2"( R2 ) r- ] , where

t2 ( r 2 ) denotes a non-central chi-square random variable with 2 degrees of freedom and

non-centrality parameter r2,

D-I



CAA-RP-89-3

2 -P1x2 ( r2) R 21 2 eXp r' 2

The Non-Central Case

If we consider the general case where not all w - 0, we use aa approach was developed Iy

Rubin [1962]:

0

3 = any arbitrary constant; we suggest 2 A= A _
A, + AJ

eo'~ ~ ~ ' =1 [[Pt~Wk L~

er =T 7 G_.e , andr j=--

Gr = [ T]r+ r2Z k+ r1 (r 1>

For i3, Ak and wk defined as given above,

a_2 +T___j am /ri2o' e x 1  - - +%---
xij +  ij

i 
r - 1

e,' T -- G,-j e,' ,and for r > 1),
rj=0

G - 2  2 1 I 91
+ 1- ij + YIj

+ 2____ r + 2 o r

2 r i) 2 [,7j 2. 2) .

+ 2 2 2 " 1- 2

oI)- 312 L 97 L +0 31Ij
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To evaluate the central chi-square cdf, we recommend the Wilson-Hilferty [1931] approximation:

P [--D22 [ 1 + (+2j-1} n, 9(n+2f.]
_n+Ln=O, 1'....

To evaluate, we determine as many of the terms of the sum as necessary; perhaps the first three

terms. The error of approximation is also found in Rubin (1962].

A Less Accurate but Simpler Approximation

A simpler approximation can be derived if we are willing to accept less accuracy. It is known

that the limiting distribution of a standardized chi-square is N[ 0,1 ] . If we approximate the chi-

square variable with its limiting distribution, we can obtain the following for any non-central chi-

square y2(W) (the central chi-square is a special case), where Z ,- N(0,1) (Johnson & Kotz [1972. p

141]

F( x; i, w) P[ X2(w) _ x] = P [Z< x - V- ]
[ 2 ( v + 2 , , .,

P[ X,(W) <x] PZ[2(v + 2w)1I/2 + V, + w < x]

Recall that D ij 7)' where Uj = "--w-. Thus

D 2 2  W2k)J ]1/]

or j a= j [ 2( + 2 )k1/] + (V +

which is of the form aZ + b, a Normal distributed variable. Recalling that v = 1 and wk -

ij -- N ij + p1kij, -°kkqtakij +2pij) ] for k = x,y.
2 .. therefore

D , -- Dij Y11ij

t2. 2. 2. 2 2.02. U2.) 2 22 .
D) NL OF + P + ' U . 2o,( +2p) + 2o + ui ,

It is easy to verify that the approximation is unbiased with respect to the first and second moments.
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To evaluate,
0,2 2 2 2

D2-<d =P Z < d - i (;+,Uxi + 01,y + 1,Y )

L -2,2., 1 (0,2, + 2 .,) + 20,2i.. ,,,,+2,) 2]

Evaluating Bivariate Normal CDFs

If X1 , X2  BVN( (0,0), (1,1), p ) [standardized bivariate normal], then we define L( h,k,p ) as

L( h,k,p) P[ X > h; X 2 > k].

It is easy to verify that

FX1X2(h,k) = P[X 1 _ h; X2 <k] - P[X 1>h] + P[X 2 >k] + P[X,>h; X2 >k] - 1.

Pearson [1901] ( see also Johnson & Kotz [1972], p. 118 ) suggested the following approximation

to L( h,k,p ):

L( h,k,p) " D(h) D(k) + Z(h) Z(k) p + 2!,hk + -!(h-1)(k-1) +

X rX

where Z(x) - 1 e 2 and -1,(x) =j Z(u)du.
T2-ir o0

Let Y1, Y 2 "- BVN( (PI,p2), (Ox, C2), p ) and let X1, X, be defined as X, Y-

X 2 = -- .Then

Y1- Y-A Y 2 /P2 < 2 -1A
-yy2) = P[ Y0 yt; Y- < y2  -= P___- --1 orl 0',

=PI X, :S< i i; X2 Y2 -JU
01--- U, --

Y1 $[ AI- ] + t[ Y2P + L[ W'-pl -1ffl--W- ]-7 ir

From Pearson's approximation, using the first two terms,

Fyy(Y1 ,Y2 ) - (h) + D(k) + D(h) $(k) + Z(h) Z(k) + .hk] - 1,

where h = k = .
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APPENDIX E

MONTE CARLO EXPERIMENTS

1. Generate an array of actual unit locations ( Xi, Yi ) from the multinormal distribution.

2. Read in the preclusion area locations within the larger unit area. and convert terrain coordiuates

to local coordinates Xpk? YPk"

3. For each unit i = m,..., 1 by -1

4. Generate TLE random variables TXj, TY . Add to ( X,, Y ) to get perceived unit locations

XiL' YiL"

5. For each preclusion area k = 1,...,np

6. Compute the distance from perceived unit i to preclusion area k, Dip k .

7. For each weapon type w = 1,...nw

J Determine if unit i is precluded from engagement with weapon wB

8. If Dip < r WPk '.

9. Set a binary variable BwPk u( i,w) = 1

10. Exit to step 13 (next weapon w).

jIf not precluded, determine if DGZ shifts due to preclusion. Find closest preclusion areal

11. Otherwise, if Dip k < rwpk and Dip k < DmnP k ,

12. Set a variable DmnP k(i) = Dip k and an integer variable Iw k(i) = k

13. Loop on weapon w.

14. Loop on preclusion area k.

15. Loop on unit i.

16. For each unit i = m,..., 1 by -1

17. For each weapon type w = 1,....,nw

18. If BwPk U(iw) = 0, [Unit inot precludedl

19. For each unit j = i+ ,..

20. If BwpkU(j,w) = 0, [Unit j not precludedl

21. Compute the distance from unit i to unit j, Dii = Dji.

I[Determine if i and j can be aggregated. Find closest unit j to il

22. If Dij < ( di + d. ) [ i,j can be aggregated
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23. If Dij < Dinaggr(i,W ) ,

24. Set a variable Dmin aggr(i,w) = Dij

25. Set an integer variable Iaggr(i,w) = j

26. If Di < Dminaggr(JW)

27. Set a variable Dmina4 ggr(jw) = Di.

28. Set an integer variable Iaggr(j,w) = i

29. Loop on unit j.

30. Loop on weapon w.

31. Loop on unit i.

32. For each unit i = 1,....m

33. For each weapon type w = 1,...,nw

34. If BWp U( i,w) = 1 [preclusion],

35. Exit to step 88 (next weapon w).

36. If Iaggr( i,w) > m [already aggregated with a previously considered unit il

37. Exit to step 88 (next weapon w).

38. If Iaggr( i,w) = 0,

39. Exit to step 74 below (single target).

[ Compute aggregated DGZ g

40. Otherwise, [ Iagg( i,w) : 0, j = Iaggr( i,w), and Di = D min aggr( :,w) I

41. Calculate o = D ij-di and compute XDGZ(i,w) = XDGZ(j,w)41. alcuate t = ij

aXiL + (l-a) XjL, YDGZ((w) =YDGz(j) = a YiL + (l-a) YjL"

42. For each preclusion area k,

43. Compute the distance from aggregate target ij ( at coordinates XDGZ( i,w),

YDGZ( i,w) ) to preclusion area k, DDPk.

[Check to see if aggregate DGZ is precluded]

44. If D DP k < rwpk Ui1'

45. Set Iagr( i,w) = 0 [preclusion rules out aggregate DGZ for weapon wf

46. Exit to step 74 below (single target).

47. Otherwise [DDP k > rwpk U ijI

[ Check to see if aggregate DGZ must be shifted due to preclusion I
48. If DDP k < rwpk and DDPk < TDminPk9

49. Set a temporary variable TD r = DD Pk

50. Set an integer variable ID wPk( i,w) = k

51. Loop on preclusion area k.
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52. If ID wPk( i,w) = 0, [ No shift in DGZ due to preclusion D
53. Set a binary variable Boshift aggr( 1,w) = Bnoshift aggrrJw) = 1

54. Set Iaggr(j,w) = m + i.

55. Exit to step 88 (next weapon w).

56. Otherwise I ID WPk ( i,w) 9 0, aggregate target, no preclusion, DGZ shift,

where j = Iaggr( i,w), k = IDWPk (i,w), and DDPk = TD minP Pk

5C l- and compute new XDGZ( ,w)= XDGZ(j,w)
Pk

2 XDGZ(jw) + (1-l) XP , new YDGZ( :,w) = YDGZ(jw) =

3 YDGZ(j,w) + (1-0l) Ypk"

[ Check to see if shifted DGZ still covers both targets j

58. Compute the distance from shifted aggregate target i" DGZ ( at coordinates

XDGZ( i,w), YDGZ( i,w) ) to target i, D iD and target j, D Ds.

59. If DiD > diw or DiD' > dJ.

60. Set Iaggr( i,w) = 0 ( shift required by preclusion rules out aggregate DGZ)

61. Reset XDGZ( i,w), XDGz(jw) to XiL, XjL

and YDGZ(i,w), YDGZ(j,w) to YiL, YjL

62. Exit to step 74 below (single target).

63. Else for all preclusion areas k,

Check to see if shifted DGZ is ruled out due to preclusion

64. Compute the distance from shifted aggregate target ij DGZ ( at coordinates

XDGZ( i,w), YDGZ( iw) ) to preclusion area k, DDs Pk'

65. If DD' Pk < rwPUk ,ij'

66. Set Iaggr( i,w) = 0 ( preclusion rules out aggregate DGZ)

67. Reset XDGZ(i,w), XDGZ(jw) to XiL, XjL

and YDGZ(0,w), YDGZ(jw) to YiL, YjL

68. Exit to step 74 below (single target).

69. Loop on preclusion area k.

70. Set a binary variable BAiBf agr( i,w) = Bshift aggr(jw 1.

71. Set I,,gr(jw) = m + i.

72. End IF I aggregate target, no preclusion, DGZ shift ]

73. Exit to step 88 ( next weapon w)

74. [ Single target, no preclusion, I gg,(i,w) = 0, B wpku(i,w) = 0

75. Set a binary variable Bnoaggr( i,w) = 1 [ Unit i not aggregated I
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76. If Iwp (i,w) = 0,

77. Set a binary variable Bo shift( ,w) = 1

78. Exit to step 88 ( next weapon w)

79. Else I Iwp (i w) 0 0, single target, no preclusion, DGZ shift, where k = 1D wPk( )

80. Calculate = rWPk and compute XDGZ(0,W) = )3 XiL + (1-2) XP ,
Dmin pk(0)

YDGZ(i,w) = YiL + (1-)Yp.

81. For all preclusion areas k,

82. Compute the distance from shifted target i DGZ ( at coordinates XDGZ( i,w),

YDGZ( i,w) ) to preclusion area k, D is P*

Check to see if shifted DGZ violates any other preclusion area restrictions

83. If Di, Pk < rwpkU ,'

84. Reset XDGZ( ,w), XDGZ(j,w) to XiL, XL

and YDGZ( i,w), YDGZ(jw) to YiL, YjL

85. Exit to step 88 (next weapon w)

86. Otherwise, set a binary variable BShjft(i,w) = 1.

87. Loop on preclusion area k.

If desired, the probability of defeating each unit i given weapon w can be estimated here

Generate CEP random variables CXj, CY,. Add to XDGZ(i,w) and YDGZ(i,w) respectively to

get XAGZ(i,w), YAGZ(i,w).

Compute DAGZ( i,w) = ( XAGZ( i,w) - + X )2 + ( YAGZ( i,w) -

(1) If Bnohift( i,w) = 1 (single target, no preclusion, no DGZ shift)

If DAGZ(i,w) < d2 w

Set Bdfenl no hiflt( i, w) = 1

(2) Else if Bhift( i,w) = 1 (single target, no preclusion, DGZ shift)

If DAGZ( i <w) d.

Set Bdfeat shift( i, w) = 1

(3) Else if Bno hift aggr( i,w) = I (aggregate target, no preclusion, no DGZ shift)

For j = Iaggr( i, w), compute DAGZ(j,w) (XAGz(,w)- X) 2 + (YAGz(jw)-Y).

If DAGZ( 40w) d2_

Set Bdefeat no shift aggT( i, w) = 1

If DAGZ(j,w) < d7w

Set BdeIea no shift aggr(i' w) = 1
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(4) Else if Bshift 4g( i, w) = 1 (aggregate target, no preclusion. DGZ shift)

Forj, =Igri, w), compute DAGz(j,W) = (X AGz(ijw)-Xj)2 + (YAGz(jMw-Y, )2-

If 2~a(iw < 2 _

Set Bdefeot shift agr i, W) =1

If GiZ(jlt) :5 djW

Set Bdcfcat Shift 49qrj W) =1

88. Loop on all weapons w.

89. Loop on all units i.

Repeat N times. Then calculate the following estimators:

a. Pprec( il w, ai, a-ggi )I - -1 F, B1 ,vp U( i~w)

b. pno hi( i w, ai avgg ) gg( i w, a )n shift5 ~( i,w)

e. Pengag( i, w ~i w, ail a-gg1 ) aggr( if w, a, =~it i, B

g. 15agghlf( ij w, a, 7 agg,1c )j pW, aij w,-g a, no ) =-k B~ hag( i, w)

h. Pengag( Ofjw I 17 agg) p ,1 9pi( ijfw, a 12 ) 4 -99 ayr B~i wagi IW) 1 hit i

f. Pengage( ij3 slw) =pshft( ij w, a agg, )Pagg( if w, a ) = .A t 0 sift ag( i,w)

9. Pemgshif( ijlsfw) = M, iiiw a,ag g,1 )j w agj ( Bjfw sfagr = i ,W f ag)i

h. Pdefrt( ii I w, w, a ) =agr ii I w, defeat Eo Bht ift W

1N
.Pdefeage( , s, I~g f) Po,hia) = j I~ w, Bij defeat -hft i,( w i n sita

kPdefeat( iTl ag 1 I w, a1 ) = , B defeat no Shift ( i, w)

m-Pdfeat( i S, agg1 w, a1) E k B defeat nshift agr( W)

0Pdefeat(jISI "9941 w, a11) - E B defeat noshift agg(i w)

P- Pdef et(j Js, agg11  w, a1 1) = , B defeat shift agor( W)

N-
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NOTE: pdef,.(i I w) = Pavail( i) { Pdefeat( i,, a-ggi I w, ai) + Pdefeat( ,s, aggi I w, ai)

+ { Pdfe. ,( ,-,aggij I w, aij) + Pdefea( ,I ,aggi I w, ai2 ) } Pavail(j) }
Pdefeat( ' I W) -1 E Paail() { Bdefeat no shift( i, w) + Bdefeat s/ift( i, w)

+ { Bde¢fea no shift agg.( i, w) + Bdefeat hift g,( t' W) } Pavai(j) }
If units ij are assumed to be available, then

Pdef,,( zw, aij) - E Bdefeat,,o hi :, to) + Bdefeat sift( , )
NPdfet 

o sif( W

+ Bdefeat no shift aggr( , Wo) + Bdefeat shift aggr( i w) }
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APPENDIX F

GENERATING REALIZATIONS

Generating Multinormal Pseudorandom Variables

In order to generate unit locations, DGZs, AGZs, etc., it may be necessary to generate

pseudorandom variables (realizations of the random variables) from an m-dimensional multinornai

probability density function:

f(x I) =exp{ - (x _-P ) T E- -) 1, oo < x <

where p 1( 02 , ... , p' ) it an m-dimensional known mean vector and E is a ( m x m ) -

dimensional positive definite symmetric variance-covariance matrix. We define a matrix R - E-.

R is referred to as the precision matriz of the distribution. p is assumed known but R is assumed

unknown with a multivariate Wishart prior. To generate realizations from this distribution, we

assume that the matrix R is given, using a point estimate (the mean) from the current Wishart

prior distribution.

The following method is given in Scheuer and Stollar [19621 and summarized in Law and Kelton

[1982, pg. 269]. Since E is a positive definite symmetric matrix, it can be factored uniquely as E =

CCT, where the ( m x m ) matrix C is lower triangular. Let cii denote the ( i, i )th element of C.

The algorithm for generating X1 , X2, ... , Xm as given in Appendix A is:

1. Generate Z1, Z2, ..., Z.. as ijd N( 0,1 ) random variables.

m
2. For i= 1, ... , m, let Xi = p + E cii Zi .

j=1
Thus each X i is a linear combination of the Zi's. The Yi's can be generated using the same

algorithm with different cj's.

Generating Nuclear Laydown Realizations for FORCEM

The objective of this section is to specify a means for generating a nuclear laydown realization

for input to FORCEM, given the defeated / not defeated status of each FORCEM unit from the

experimental design. Several criteria will be followed:
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1. Each division (FORCEM unit) will have at least the required number of potential target

units defeated that are required to defeat the division ( nin defeat )"

2. The units will be ranked in order of target priority. This permits the weapon allocation to

be directed against the units of highest priority.

3. For each FORCEM division that must be defeated, the first nmin defeat units in order of

decreasing Pdefeat( ) will have an Pavail = 1, in other words, they will assumed to be acquired.

retained, and available for fire planning. They will also have perfect weapons reliability (no failures)

and AGZs will be generated randomly for each available weapon in order of weapon preference. The

L,,,., weapon that yields an AGZ with the target coverage to defeat the unit will be selected for firing

against that unit. The remaining units will be available randomly according to Paves? for each unit.

weapons may fail randomly, and AGZs are not forced to cover the target. This insures that at least

nmn, defeat are available for fire, and those units which are to be struck are those most likely to be

defeated.

4. For each FORCEM division that must not be defeated, the first (m-nmin defeat+') units

in order of increasing Pdefeat( ) will have an Pavail = 0; in other words, they will assumed to be not

acquired or otherwise unavailable for fire planning. This insures that at least (m -nmi, defeat +1) are

never engaged, so the division cannot be defeated. The remaining units will be available randomly

according to Paail for each unit, weapons may fail randomly, and AGZs are not forced to cover the

target.

In order to keep the algorithm manageable, the generation of a FORCEM realization will most

likely have to be done in parts, probably Blue corps sectors for Blue against Red and Red army

sectors for Red against Blue. Within each sector, perform the following algorithm:

ALGORITHM:

For each division (FORCEM unit) j =1 to ndi,,ision to be defeated in order of division target

priority

Generate actual and perceived locations for all potential target units

Order the unit Pdefeat( i) values in decreasing order. Set Pmin defeat = the mnmi, defeatth

probability in order

Order the units by decreasing target priority

[1] Let Ndefeat = 0
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For each unit in division j, i = 1 to m, in order

If Pdefeat( ) < Pmi,. defeat'

Draw U - Uniform( 0,1 )

If U > Pa,ail, go to next i

Else for each weapon w = 1 to nw in order by target preference for unit i

If weapon to is not available within range, go to next w

Else determine the DGZ for unit i with weapon w based on preclusion and

aggregation

If DGZ precluded, go to next to

Else if Pdefeat(i) < Pmin defeat,

Mark weapon w as expended

Draw U - Uniform( 0,1 )

If U > weapon system reliability, go to next i (a dud was fired)

Else generate and store AGZ for unit i using w (successful detonation)

If AGZ to actual location distance < diw, let Ndefeat = Ndefeat + 1

Exit loop on to

Else ( Pdfeat( i) >_ Pmin defeat

Generate an AGZ for weapon w

If AGZ to actual location distance > di, go to next to (try again)

Else store AGZ for unit i

LetN defeat -N defeat + 1

Mark weapon w as expended

Exit loop on to (go to next i)

End loop on to

End loop on i

If N defeat < nrmin defeat' set Pmin defeat = the (2 • nmin defeat)th probability in order,

destroy all AGZs, restore weapons expended and go to [1]

End loop on j

For each division (FORCEM unit) j =1 to ndivision not to be defeated, in order of division target

priority

Generate actual and perceived locations for all potential target units

Order the unit Pdefeat( i) values in increasing order. Set Pmin defeat = the

(m-nmi,, defeat +l)th probability in order

Order the units by decreasing target priority
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For each unit in division j, I = I to rj in order

If Pdfeeat( i) < Pmi,. defeat' go to next i (unit not available for engagement)

Else draw U - Uniform( 0,1 )

If U > P.vaij, go to next i (unit not available for engagement)

Else for each weapon w = 1 to nw in order by target preference for unit

If weapon w is not available within range, go to next w

Else determine the DGZ for unit i with weapon w based on preclusion and

aggregation

If DGZ precluded, go to next w

Mark weapon w as expended

Draw U - Uniform( 0,1 )

If U > weapon system reliability, go to next i (a dud was fired)

Else generate and store an AGZ for weapon w and unit i (successful detonation)

End loop on w

End loop on i

End loop on j
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APPENDIX G

EXAMPLE OF AN ANALYTIC SOLUTION

Section I - UPDATING THE MULTINORMAL DISTRIBUTION

Suppose that there is a simple template that consists of only two units, #1 and #2. Both units

are mechanized infantry units consisting of personnel in APCs, with a target unit radius of 500 m.

The template has unit #1 located at coordinates ( 0, 0 ) and unit #2 located at coordinates ( 0.

1100 ). When the template is placed on a map and oriented correctly, there are two nearbhv

preclusion areas whose local ( X, Y ) coordinates translate into ( 1000, 1000 ) for preclusion area #1

and ( 500, 1600 ) for preclusion area #2.

There is no prior information available on the variance-covariance matrix E for this templated

force, so a non-informative prior will be used to update E.

Four experiments are run where the units are arrayed using the NUFAM-GAP system. The

following data are obtained:

Expt. #1: x ,--- 145T--75 ]
Exp. #: x, = 1080 Yj -- -85

Expt. X2 3020  Y2 = 1035

Expt., =3 -x - 1 6 4 0  Yz--40

Expt. #3: x2=-1850 y =1305 ]

Expt. #4: r =3480 Y i-
2 7 5

X2 =555 V2= 1315
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Updating the X-dimension Variance-Covariance Matrix E :

The precision matrix Rx of the multinormal distribution for X1, X2 has a prior Wishart

distribution ( a, rx - 1 ) where r z is the precision matrix of the Wishart distribution. The

noninformative values of a and rx are:

Q= 0 Tx= 10 0

From Appendix C, we know that the posterior distribution of RT is distributed as Wishart

(a+n, rz* )whererz*-- r. + (xi-mz)(xi -m ) t.
i=1

We begin by evaluating (x, -mi), recalling that m = ( 0, 0 )t. Thus n = 4 and denoting

x i- n zErx i - m.,]
xi - . -m2i M Z2]

r- - [n, = F- I T4M= 80m: [380]xL 177 mj = o- m 3020J X3 -~ m 1 1850.] X4 - m-r = [~o

r x * r x + ( x i -- m . ( x i -- m . )I

E Xi z 02 X I k x -- li '(l- -1)( x2i --Mx2

0 0 ,n n

_ [ 0 0 1+ L15,987,425 7,970,350 15,987,4 25 7,970,3501
* - 0 0 j 7,970,350 15,983,825 L 7 970,350 15,983,825

For the analytic model, we assume the variables X1 , X2 to be distributed as multinormal ( p.. E )

where p, is known (the templated mean locations) and Ex = E[ R - 1 ]. From the Wishart

distribution, we know that E[ Rx I = (a+n) r * - 1. Thus EZ = E[ RZ - 1 =

f {(] =

15.987,425 7,970,350 3,996,856 1,992,588

4 7,970,350 15,983,825 1,992,568 3,995,956
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Thus al, Vart[ X,] = 3,996,856; o' 2  Var[ X, ] = 3,995,956 and

a',1 2  Cov[ X1, X2  =1,992,588, with P,12 0 0.499

For convenience, we round off as follows:

0'r = 1,999 - 2,000; 0', 2 = 1,999 -- 2,000 and

a',1 2 = 0.499 (1,999) (1,999) - 0.5 (2,000) (2,000).

Updating the Y-dimension Variance-Covariance Matrix Ey:

The precision matrix Ry of the multinormal distribution for YI, Y, has a prior Wishart

distribution ( a, ry - 1 ) where ry is the precision matrix of the Wishart distribution. The

noninformative values of a and rx are:

a~ I =o 7
0 "=[- 0 0 ]

From Appendix C, we know that the posterior distribution of Ry is distributed as Wishart
n

o+n, ry * - ' ) where ry* = ry + E (yi -my) (yi-my) .

i=1

We begin by evaluating (yi -m y), recalling that m1 = 0, 1100 )t. Thus n = 4 and

y* -- + (Y-my) (y5 =my)7

0 1 205

( m )(y 2 -m 2 ) ' (y 2 i -M ),0 0 i~z= l

L 160,075 144,350 ]
- 144,350 160,075

For the analytic model, we assume the variables Y1, Y2 to be distributed as multinormal ( py, Ey

where py is known (the templated mean locations) and Ey = E[ Ry -
1  = E[ {(a+n)

r. }1 = ry*. Thus
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E 1 160,075 144,350 ]F 40,019 36,0881
4 144,350 160,075 36,088 40,019

Thus a Var[ Y, I = 40,019 = 2 Var[ Y2

0,12 Cov[ Y1, Y 2 1 =36,088, with Py12 =- %iy_2 = 0.902 0.9.

For convenience, we round off as follows:

17Y- 200.0 -- 200; oy2 = 200.0 -- 200 and

ay12 - 0.902(200.0)(200.0) -- 0.9(200)(200).

Section II - SINGLE UNIT, SINGLE PRECLUSION AREA

Given information

Suppose we have a unit with the following characteristics:

Radius: 500 m.

Target elements: Personnel in APCs, Transmission Factor (TF) = 0.7

Mean location ( p±, , ) = ( 0, 0 )

Location variance: a . , 0002 in; o = 2002 m

paval(1) = 1.0 (for convenience, we assume that it is available)

Target location error (TLE): at., = utvl = 0; atz] = 752 in, a = 1002 m2

We also have the following weapon characteristics:

Weapon 1: Yield: 1 kt CEP: 150m

Weapon 2: Yield: 10 kt CEP: 100m

From the CEP, we can compute the distribution of the shift due to weapon accuracy:

Weapon type 1: czl = jy = 0; o'.I = oC = 150 = 225 m
Weapon=type 2: MVl = = 0; 0 cX1 = = 100 = 150 m

We also have a required target coverage (target defeat criterion) of 30% coverage with IT radiation

effects against personnel (3000 rad).

There is a preclusion area (#1) with a radius of 1000 m. located at coordinates ( xp, ) =

( 1000, 1000 ).

The preclusion area requirement is assumed for this example to avoid an exposure of more than 75

rad to exposed individuals, with a safety buffer of twice the weapon CEP.
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Computing the necessary constants

From the above information, we can compute the required constants:

rT1 = 500 m (given)

Using the following (unclassified) formulas for converting dose to ::-tance, we can find the r,

ranges.

3000 rad inside dose (0.7 TF) 3000 = 4286 outside dose.7
For a 1 kt yield,

D = exp{ 14 e- 8.6 x 10-4 R where D = (outside) dose in rad and R is the range in meters.

From this, a 4286 rad dose is achieved at 600 m and a 75 rad dose at 1370 m.

For a 10 kt yield,

D = exp{ 16.4 e- 6 "8 x 10-4 R }, where D = (outside) dose in rad and R is the range in meters.

From this, a 4286 rad dose is achieved at 990 m and a 75 rad dose at 1960 m.

This yields rw = 600 m. and rw = 990 m.

For preclusion, twI(preclusion) = rw( 75 rad) + 2(CEP 1 ) = 1370 + 2(150) = 1670;

rw2(preclusion) = rw (75 rad) + 2(CEP 2 ) = 1960 + 2(100) = 2160.

Thus the rwp values are: rw pI = 1670 + 1000 = 2670 m; rwP - 2160 + 1000 = 3160 m.

30% of a 500 m radius target area is covered by a 1 kt weapon ( rw I = 600 m ) at a distance of 925

m. 30% of a 500 m radius target area is covered by a 10 kt weapon ( rw 2 990 m ) at a distance

of 1355m. Thusd w = 925mandd w = 1355m.

From the rw(preclusion), rp and d IW values, we can compute rwp, and rwpu l for both

weapons.

rwIpI = 1670 + 1000 = 2670 m; rw2p, = 2160 + 1000 = 3160 m.

rwlptv = 2670 - 925 = 1745 m; rw2pIUI = 3160 - 1355 = 1805 m.

Computing the distributions from target unit #1 to preclusion area #1

We can compute the parameters of the important distributions from the target and preclusion area

information.

PzJ I ( /Jr + PI ) - ( Xp1 + 4tizP ) = ( 0 + 0 ) - (1000 + 0 ) = -1,000

P,,( I y + Pty, ) - ( YPI + Pi Pt ) = ( 0 + 0 ) - (1000 + 0) = -1,000

0 21P, -= (2 + 0' 2 ) + ( p.2 + 01 ) = (20002 + 752) + (0 + 0) =4,005,625
221 . 0.2 + C202+102

_ + ly)+( 1, 0-+ )= -( 9002 + 0 + 0) = 50,000
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Let a nd
2 92 2 +ot I  - 2 Z'IP,('ll+ p l ZIP ZIPlo zl 2P ll

Then

D 2 N[P,, or D -N[ 6,055,625; 4.832 x 1013].

AI P 1 6,055,625

a I -P1  6,951,084

Computing the probabilities of preclusion and shift (unit #1 from preclusion area #1)

26702 _ lipl]=PZ 014
Po shift( I w,, a,, agg I ) = pr f.2 p

I > r2wi,] = Pf Z > -6702-_ I j = P[ Z >0.154

= 0.439 31602 -P

Pno shift( w2, a,, ajg ) P[ D P > r2p ] = P[ Z > o>5

= 0.286
275 >tl =- pf > --0.43[

Tprec( l wl, a,, a~gI ) = PD > rj,,U ] = P[Z > P, -0.433

= 0.668

2 ~ ~~~1805" ~l]_ [Z>-.0
pre( 1 w2, a,, agg, ) = P[ D 2 > rwPU ] = P[ Z > l P

= 0.656

Since P~hift( 11 w, a1, agg ) = PpTec( 11 w, a,, agg1 ) - P shi( i1 w, a,, agg1 ),

Pshift( 1 wI, a,, aggt ) = 0.668 - 0.439 = 0.229

Phift( 1 w 2 , a,, agg ) = 0.656 - 0.286 = 0.370

Computing the A GZ and conditional defeat distributions

Let AGZ I denote the AGZ from firing the weapon of type 1 and AGZ 2 denote the AGZ from

firing the weapon of type 2.

(1) No DGZ shift, Weapon type 1:

XAGZ = X1 + TX1 + CX ; YAGZ = Yt + TY, + CY,. Thus

XAGZ - X 1 = TXI + CX 1 ; YAGZ- Y1 = TY, + CY1 .

Let Pr1AGZI = E[XAGZI-XI1 = PtZ1 + Prt; PyIAGZ! E[YA - Ptp1 + PGZr
2 = .2Va

z1AAG 1 -tx C e, AGZ I AGZI- -- "
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P1 AGZ 1 -xlAGZ I  y I AGZ I + 1  AGZ I

= 2o 2 AGZ2 2

°I1AGZ - 2"AGZI( AGZI 2P AGzy I y I y I

Then the squared distance between the AGZ for weapon of type w and the unit 1, D AGZw is:D2~~ ~ A 2 G 0wAZ

1 1AGz DIAGZ + DyIAGZI  [J[lAGZ1,aAGZ]

Evaluating the terms,

P IAGZ I = 0 ; MyyIAGZ 1  0

21 A Z= 752 + 2252 56,250; . A G = 100 2 + 2 2 5 2 = 60,625.

PIAGZ, = 0 + 0 + 56,250 + 60,625 = 116,875

0..GZ -- 2(56,250)2 + 2(60,625)2 = 13,678,906,250

0 iAGZ1 - 116,957

The conditional probability of defeat given weapon type 1 and no DGZ shift is:

9252 - /J1AGZ I

Pdefeat(lw'as,a ) = P, a, -, P[D2AGZ <d 2 = Z <_ 92_ AGZ I = P[ Z < 6.32]

- 1.0

(2) No DGZ shift, Weapon type 2:

The squared distance between the AGZ for weapon of type #2 and the unit 1, D2 AGZ2 ' is evaluated

as before.

PrIAGZ2  0 1 AGZ 2 = 0

's21AGZ 2 = 752 + 1502 - 28,125; 02 IAGZ 2 = 1002 + 1502 = 32,500

A IAGZ2 = 60,625

0U2AGZ = 3,694,531,250

0IAGZ 2 60,783

The conditional probability of defeat given weapon type I and no DGZ shift is:

Pdefeat( 11w 2 , al,-Fa-g) P[ D2AGZ2 < d2 W2 13552 _ IAGZ2 ]

lA 2  d1  - or UI AGZ2
= Pf Z < 29.209 1 1.0
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(3) DGZ shift, Weapon type 1:

Recall that rw p = 2670 and E[ DIJ = 6,055,625. Thus

'31 = w I = 1.08b

~Ef D21 pl
The shifted DGZ coordinates are:

XAGZJ1 = 3 XIL + ( 1- ) xp, =3 ( X,+TX1 ) + ( 1-) ) XpI

YAGZ = '3 YIL + ( 1- ) YPI =3 ( YI+TYI ) + ( 1-l ) yP

Thus

XAGZ1 - X, = ( f-I ) X, + 13 TXI + ( 1-) ) xp + CX, and

YAGZ - Yj = ( 3-1 ) Yj + 1 TY, + ( 1-f ) yp 1 + CY.
Let IG1AZ- -X1] = (1-i)* + opt., + ( 1- ) xp + PCXI

I AGZ1I E[YAGZ -YI] = (0-1),IA + Oj/ 3u + ( 1-)3 ) yp+ P I

22 2
or :iAGZ1 Var[X A GV - X1 = (13-1)aZI + 13oix1 + 2a'cxl

0. AG Var[YAza-Y1] = (3-1). 21 + 00 2 1 + or 2

_ = .2 + .2 2

IAG , XAGZ, yIAGZI AGZ
or2 2o 202 (or 2 Zs+2 2 ~ + 2 f 2  V(,7 2  +2p 2  )S1A GZ, x 1A GZ1 z1AGI x IA GZsj' YAGZ YA GZ Y IA G 1

Then the squared distance between the AGZ (based on a shifted DGZ) for weapcL, of type #1 and

the unit 1, D2AGZa, is:

D2  D 2  .+D 2  ANt 0.
IAGZ1 = zlAGZ yAG [ 1.1

Evaluating the terms,
~i~rAGZI = 0.085(0) + 1.085(0) - 0.085(1000) + 0 = -85 = jv1AGZI

0I GZ' = 0.085(20002) + 1.085(752) + 2252 = 396,749

0 . 2 AGZ- 0.085(2002) + 1.085(1002) + 2252 = 64,875

1AGZ = 2(-85)2 + 396,749 + 64,875 = 76,075

0.L27 2(396,749)(396,749+(2)(_85)2) + 2(64,875)(64,875+(2)(-85)2) - 336,578,874,208

The conditional probability of defeat given weapon type 1 and a DGZ shift is:

2 9252- AGZ]_
pde=eag( I w,, a=,s,a gg) = P[ DIAGZI d I -- 0.1A GZ <I P[ Z<0.654

= 0.744
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(4) DGZ shift, Weapon type 2:

Recall that rwzp, = 3160 and E[ D ] -- 6,055,625. Thus

02 = r _ _ = 1.284
7E[ =~~

The squared distance between the AGZ (based on a shifted DGZ) for weapon of type 2 and the unit

1, D 2 AGZW' is evaluated as before:
D 2AZ D 2  V+D 2  :-[2

DAGZa DzIAGZS + YIAGZs .N[pIIAGZV*,lAGZ2]

Evaluating the terms,

AzIAGZV2 = - 0.284(1000) = -284 = p ylAGZV
A2  = 0.284(20002) + 1.284(752) + 1502 = 1,160,227

a 2 - 0.284(2002) + 1.284(1002) + 1502 = 46,706
Y 1 A GZ82

,Z i AGZ8 1,374,388
7 AGZ2  - 3.116 x 1012

The conditional probability of defeat given weapon type 2 and a DGZ shift is:

13552-/,AZ] p[Z_0.6]

Pdefeat( 11 w2 , a, s,aggI) = P[ D2  <d: ]=P[Z< 1 2IAGP

= 0.738 
2

Computing the defeat distributions for target unit #1 as an only target

Suppose that Po,,nd( 1, w, ) = 0.75, Prond( 1, W2 ) = 0.25. Since Parail was assumed to be 1.0

and Taggr(lw, a,) = !aggr(lIw 2 , a,) = 1.0 as there are no other units in this example.

pengage(1,1w ) = P,*o ,hift(lw, aagg 1 ) and Pegage(1,sIw ) = pshit(lw, a,, ag, ) for w -

1,2.Thus

Pdefeat( 1 Pdfeat( 11 wt, a, ', aggI) • Pno shift( 1 wI, a,, aggI ) Prtnd( 1, w )

+ Pdefeat( l w 11 al, s, a~g1 ) Pshift( I w, a,, a-ggt ) " Pron( 1, w t )

+ Pdefeat( 1 W2 , a,, s, agg) . Pno shift( 1 w 2 , a1 , a-gg, ) • Pround( 1, w 2

+ Pdefeat( 1 'w2 , a,, s, a~g1 ) Pshift( I w 2 , a,, agg, ) * Pround( 1, w2 )

= 1.00 • 0.439 • 0.75 + 0.744 • 0.229 • 0.75 + 1.00 • 0.286 - 0.25 + 0.738 • 0.370 • 0.25

= 0.622
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NOTE: The probabilities of defeating unit #1 will be recomputed in the next section, when an

additional preclusion area and an additional target unit are added to the example.

Section III - SECOND UNIT, SECOND PRECLUSION AREA

Given information

Suppose we have a second unit with the following characteristics:

Radius: 500 m.

Target elements: Personnel in APCs, Transmission Factor (TF) = 0.7

Mean location ( A,,1 A2 ) = ( 0,1 100 )

Location variance: or 2 = 20002 m2 ; a 2 = 2002 M2

Since units #1 and #2 are jointly distributed as multinormal, we must also define covariances.

Cov[ X 1 , X 2 ] - 'x12 = Pxz20"ziorx2 = 0.5 ( 2000 )( 2000 ) = 2,000,000

Cov[ Y 1, Y 2 ] oy 12 = Py12 'yio'y 2 = 0.9 ( 200 X 200 ) = 36,000

pGIaii( 2) = 1.0 (for convenience, we assume that it is available)

Target location error (TLE): Atx2 = Aty2 = 0; or',2 752 i
2 , o't2 1002 m2

We also have the same weapon characteristics as before and the same required target coverage

(target defeat criterion) of 30% coverage with IT radiation effects against personnel (3000 rad).

There is a preclusion area (#2) with a radius of 500 m. located at coordinates ( Xp 2 , Yp2) = ( 500.

1600 ). The preclusion area requirement is the same as in the previous part of this example.

Computing the necessary constants

From the above information, we can compute the required constants:

rT2 = 500 m (given)

Since the weapon and target types are the same, r -1 600 m. and rw2 = 990 m.

For preclusion, rwI(preclusion) = 1370 + 2(150) - 1670; rwy2 (preclusion ) - 1960 + 2(100) =

2160.

However, the radius of preclusion area #2 is different. So the r wp 2 values are:

rw1P2 = 1670 + 500 = 2170 m; rw2p2 = 2160 + 500 = 2660 m.
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30% of a 500 m radius target area is covered by a 1 kt weapon ( r w = 600 m ) at a distance of 925

m, tnd 30% of a 500 m radius target area is covered by a 10 kt weapon ( rw2 = 990 m ) at a

distance of 1355 m as before. Thus

d 2 wI = 925mandd 2 w 2 = 1355m.

From the rw(preclusion), rp2 and d 2W values, we can compute rwp2 and rWP2U2 for both

weapons.

rw p2 = 1670 + 500 = 2170 m; rw p2 = 2160 + 500 = 2660 m.

rw P2U2 = 2170 - 925 = 1245 m; rw2P2U2 = 2660 - 1355 = 1305 m.

From the rw(preclusion), rpI and d 2W values, we can compute r and rwp u 2 for both

weapons.

rwzp, = 1670 + 1000 = 2670 m; rw2p2 = 2160 + 1000 = 3160 m as before.

rwpu2 = 2670 - 925 = 1745 m; rw2piu2 -- 3160 - 1355 = 1805 m.

We also need to compute the constants relative to unit #1 and preclusion area #2. From the

r w(preclusion), rp and d, w values, we can compute rwpf for both weapons.
2 2U

rwp2gU = 2170 - 925 = 1245 m; rW 2P2UI = 2660 - 1355 = 1305 m.

Thus rwpk max{ rwpk i, rwpk. } is easily calculated for k = 1,2 and w = 1,2:

rW IPI12-- 1745 m; rw2PiU, 2 = 1805 m.

rWP2 Ul 2 = 1245 m; rw2PIU12 = 1305 m.

Computing the distributions of the distance from preclusion areas 1 and 2

(1) Unit #2:

Preclusion area #1:

Jzp I =( Ijx2 + PW 2  XP .+p p = 0 + 0 )( 1000 + 0 ) -1,000

Ppy2 P I  ( Py2 + ty2 ) - ( yp + pttyp 1 ) (100 + 0 ) - ( 1000 + 0 ) = 100

2 -(2 2 2 2
OZ2P 1  z~2 W + J 'P I + OtxP ) U m.)U UJKIU ,

2 -- 2 + '22 ) + ( + ) - ( 2002 + 1002 ) + ( 0 + 0 ) - 50,000
01.2P 2 Y2 + 7PI °ty Pi

Lt 2 2 2 2

Let P2p I - IU2P1 + P Y2Pl + ax2Pl + O'y2p I and
2 2 2,2 2 2

2 =2o2, (az 2p+2 2 p) + 2 Y2p (or 2p +2pY2p

Then
D22 D 2 =6,3,2

D2p --:N[P 2 P, o'2Pj ] or D2p,:-N[ 5,065,625; 4.812 x 10 ' 13, with 0 2P 6,936,826
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Thus
26702 - 2PI - P[ Z > 0.297] = 0.383

PDp >rwip 1 ] =P[Z > 0 2pi

31602 _ 12P1 ] P[ Z > 0.709] = 0.239
P[D p>r 2 P,1  P[Z > '.2P,

17452 -2P[ D2  > =[

2P> rPU] -2 a P[ Z > -0.291 0.615

2 18052 -2 _12P
P[ I r 2  ] -2P P[ Z > -0.261] = 0.603

Preclusion area #2:

P.21'2  (Uz2 + x2 )-( x 2 + t.p2 ) 0 + 0 (500 +0)= -500

My2P 2  ( y2 + /* y2 ) - ( Yp 2 + ptvp 2 ) - ( 1100 + 0) - (1600 + 0 ) = -500

, 2 P 2  2 +' 2+ 2 . p 2 )(20002 + 752 )+( 0 + 0 ) 4,005,625

2y2P2  Y2 + 7Y2 ) + ( 2 + p) -" ( 2002 + 1002) + (0 + 0) 50,000

Let P2P =_~p+2p +1A + 2P
2  + 2P2 p 4,555,625

o2p 2 -. 2og 2 P(ou 2 p+,2P 2 ) + 2oyP('2P+1J 2 -- 3.615 -x32. 1a

6,012,544

Thus

21702 - u -P2 P[ Z > 0.025] 0.490
PDp 2 >rp2 P]=P[Z > r2p 2

26602 _ 2P 2 - P[ Z > 0.419 J - 0.338
P[ D~p2 > r2

2 p2 ]-P Z> U2 p2

P 2 2 ~ 12452 _-12
D1PD452  wp 2  P[Z>2 P[ Z > -0.500] = 0.691P[13052 -

P1 2  
2 r 2 10 2 -- P[ Z> -0.474] = 0.682

2 2  w2p2U2 P[ Z > 2P2

Since prec( i w, ai, ag) -rin P[ Dp > r 2wp and

Pno shift(ZIw, ai, ag mi rn { P[ D pk > rrp] }I

kk k

"5prec( 21 w1 , a2 , ag 2 ) rin( 0.615, 0.691 ) - 0.615

prec( 21 W2 , a2 , a7g2 ) m min( 0.603, 0.682 ) " 0.603

Pn o shif(2 w, a2 , ag:92  m min( 0.383, 0.490 ) 0.383

Po ,i2 (2 w2 , a2 , aJg 2 m min( 0.239, 0.338 ) = 0.239
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Since pshij( 21 w, a2, ag 2 ) w 2 is, a2, a9g2 ) - po shif( 21 w, a 2 , a7g2 ),

Phift(2 iw1 , a2, a4g 2 ) = 0.615 - 0.383 = 0.232

Pkift( 2[ "2, a2, ag 2 )= 0.603 - 0.239 = 0.364

NOTE: The closest preclusion area for target #2 is preclusion area #1, so all DGZ shifts will be

computed from preclusion area #1.

(2) Unit #1:

Preclusion area #1: The distributions were calculated in section I.

Preclusion area #2:

PAxi P2 14z p't ) - ( xP2 + /'ttp 2 ) = ( 0 + 0 ) - ( 500 + 0 ) - -500

-( + 1tP2 ) - ( YP2 + tY2 ) = (0 + 0) - (1600 + 0) = -1600
a2 2 1)+ 2 200

ZiP2  2 ) = ( 20002 + 752) + (0 4- 0) =4,005,625
a2 ( 21 + a[, ) + ( 0.2 + ,2  ) (002 + 1002) + 0+0) = 50,000

Lt2 2 2 +2
Let x = + + +i2 + 2 = 6,865,625

0.12 2  2 ,2 U2 1 021 ,2 2 1013

2 z x2+2 
x )+ 2 

= 3.661

P2 = 6,050,842
Thus

P[D 2  > r 2 21702 P 2 ] P[ Z > -0.356] = 0.639

P[ D2  > r2  26602 _ - P Z > 0.0351 0.486
2 22 Z" 1 P2P[ D2 > r2w22 125 _[ P> °' 2

P[ D > i P12452 - P 2 ] - p[ Z > -0.878] = 0.810

P D2 > r2  =13052 _ P1] - P[ Z > -0.853 =0.803rW2P2UI Z' 1 P2

Since Tpre( i Iw, ai, aggi) = min P[ rwpU ] and

Pno shift( ilw, ai, agg i ) = min { P[ Dipk > r ]

~Prec( 1 Iw1 , a1, agg ) = min( 0.668, 0.810 ) 0.668

prec( 11 w2 , a,, agg, ) = min( 0.656, 0.803 ) 0.656

Po ,hift( I I wl, a,, a~g )= min( 0.439, 0.639 ) = 0.439

Po shift( ' 1w2 , a,, ajg)= min( 0.286, 0.486 ) = 0.286
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Since phift( 11 w, a1 , agg1 ) - pprec( 11 W, a1, agg ) Po shift ( I I w, a, ajg ),

Pshift( 1 tw,, a,, agg ) = 0.668 - 0.439 = 0.229

Pshit(1 W2 , a,, agg ) = 0.656 - 0.286 = 0.370

NOTE: The closest preclusion area for target unit #1 is preclusion area #1, so all DGZ shifts will be

computed from preclusion area #1. As a result, the probabilities of Thprc(1jw, a1 , agt),

Pno shift( 11w, a,, afg 1 ), and phift( 11 w, a, a~g1 ) remain the same as calculated in section #1.

Computing the distributions of the distance between target units 1 and 2

The differences between the perceived locations of targets I and 2 are:

X-coordinate: ( X, + TX1 ) - ( X 2 + TX2 )

Y-coordinate: ( Y1 + TY1 ) - ( Y 2 + TY 2 )

Thus we define

yx12 =- (A1 + zI)-( P2 + Ptz2 )=(0 + 0) -(0 + 0)= 0

+ yl ) - ( r P ty2 ) = ( 0 + 0 ) - (1100 + 0 ) = 11002 2 2 ,2 +2(,
0Z.12 - ( 0I + Ox+ .tx 2 ) + 2 (-1)PrI2o rZ-Yx2

- ( 20002 + 752 ) + ( 20002 + 752 ) - 2(0.5)(2000)(2000) = 4,011,250
a2 r2 2 6

'; - ( I + t ) + ( Oy2 + ty2 ) + 2(-)P y2coo 2

= ( 2002 + 1002 ) + ( 2002 + 1002 ) - 2(0.9)(200)(200) = 28,000

Let P12 - x12 + gY12 + 0.r12 + o'y 12 = 9,249,250
2 r 2 '221)J 2 /2 t2 1014

012 = 2 Z12 ('YZ 12 +2 1 2 ) + 2oy 12 (y 1 2 +2 y12 ) = 1.285 x

0 =12 = 11,335,667

Then

D 2 > 1  + d 2 W 2925)2 ] = p[ Z > -0.051] = 0.520)21

+ ) 2 ]p[ Z> (2"1355) 2 - I12 P[ Z > -0.295]
P[ D12 > (d I W 2 +r d 2 W2 ] 0P 1>2l

= 0.384

Thus paggr( 121 w,, a1 2 ) = 1 - 0.520 = 0.480 and paggr( 121 to2 , a, 2 ) = 1 - 0.384 = 0.616.

G-14



CAA-RP-89-3

Computing the aggregation and engagement probabilities

(1) Unit #1:

Recall that -aggr(il w, ai) = 1 - mx{ pgr(iJw, aij) Pavaii(J) - prc(j w, aj, agj ) In

this case, for 1 = 1, there is only one j 0 i : j = 2. Previously we found the following:

Pprec( 2 1 wl, a2, ag 2 ) = 0.615 and gprec( 21 w2 , a2 , ag 2 ) 0.603.

From the previous paragraph, we have:

Paggr( 12 1 wl, a1 2 ) = 0.480 and Paggr( 12 1 w2 ,a 2 ) -- 0.616.

If we continue to assume that Pavail( 1 ) = Pavail(2) = 1.0,

Paggr( 1i w1, a, ) = 1 - {0.480 -1.0 0.615 }=0.705, and

1ggr( 1 w 2, a,) = 1 - 0.616. 1.0 0.603 = 0.629.

(2) Unit #2:

For i = 2, there is only one j 96 i : j = 1. In section 1, we found the following:

prec( 11 w,, a, agg, ) = 0.668 and gpr,,( 1i w2 , a1, agg) = 0.656.

From the previous paragraph, we have:

Paggr( 12 1 w,, a12 ) = 0.480 and Paggr( 121 W2 ,a 2) = 0.616.

If we continue to assume that Pavai( 1) = Pavail( 2) = 1.0,

-aggr(21w 1, a2 ) = 1 - 0.480 1.0 0.668 } =-0.679, and

paggr( 21 w2 , a2 ) = 1 - 0.616. 1.0 0.6561 0.596.

From this, we can compute conditional probabilities of engagement:

Peagage(iSI W) =P 4 ,,j(i .p 0  hft(iw, ai, a-gi). oaggr( iIw, a),

Pengage( i,s1W) = Pail(:) phip(il w, ai, a-gi) • Taggr( iw, ai ),

pengage( ZJ, w) = pengage( i,T IW) • Pond( i, w), and

pengage( i,s, w) = pengage( i, 5 w) • Proud( i, W).

In the previous section. we assumed that Pround( 1, w1 ) = 0.75 and Prond( 1, w2 ) = 0.25. Let us

assume that Prond( 2, w, ) = 0.25 and Proud( 2, w2 ) = 0.75.
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(3) Unit #I:

(a) Weapon #1:

pgig,( w, Iw1 ) = 1.0 • 0.439 • 0.705 = 0.309

Pengage(1,sj wl) = 1.0 • 0.229 • 0.705 = 0.161

pengage( 1,-, WI) = 0.309 • 0.75 1.0 0.232

Pengage(1, S, w1 ) = 0.161 • 0.75 1.0 = 0.121

(b) Weapon #2:

Pengage( 1,) w2 ) = 1.0 • 0.286. 0.629 = 0.180

Pengage( 1,81 W2 ) - 1.0 • 0.370 - 0.629 = 0.233

Pegage( 1,jS, W2 ) = 0.180 • 0.25 • 1.0 = 0.045

PengageM( 1,, w2 ) = 0.233 • 0.25 1.0 = 0.058

(4) Unit #2:

(a) Weapon #1:

Pengage(2,' I w,) = 1.0 0.383 • 0.679 = 0.260

pengag(2, slw,) = 1.0 • 0.2'.32 0.679 = 0.158

Pengage( 2,-, wI ) - 0.260 • 0.25 • 1.0 = 0.065

Pengage( 2, s, w) = 0.158 • 0.25 ' 1.0 = 0.040

(b) Weapon #2:

Pe,ngage( 2, 1 w2 ) = 1.0 • 0.239 • 0.596 0.142

pengage(2, s( w2 ) = 1.0 • 0.364 • 0.596 = 0.217

Peigage( 2 ,J, w2 ) = 0.142 • 0.75 • 1.0 = 0.107

Pengage(2, S, W2 ) = 0.217 . 0.75 • 1.0 = 0.163

Computing the AGZ and conditional defeat distributions of Unit #2 engaged as a single target

(1) No DGZ shift, Weapon type 1:

XAGZ = X2 + TX2 + CX 2 ; YAGZ = Y 2 + TY 2 + CY 2 . Thus

XAGZ- X 2 = TX 2 + CX 2 ; YAGZI - Y2 = TY2 + CY 2 -.
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Let llr2AGZ = E[XAGZ- X2] = M2 + cz2; y2AGZ E[YAGZ -Y 2] = Pty2 +

2 2 2 1 V[YG Y1 O%2 +0';2AGZ! E Var[XAGZ,-X2] =02 + 0cz2, Y2AGZ= 2 c

=2
P2 AGZ I x2 A GZI + A'Y2 AGZI + 0.2 AGZI + 0';2 AGZ 1

2 90.2 (2 9
2  ) + 2,29 2\. 2AGZ - - z2A GZ1 (z2 A GZ I +-2AGZ 1 )  r ' 2AGZIt 2AGZI +2 1 y2AGZ I )

Then the squared distance between the AGZ for weapon of type #1 and the unit 2, D2 AGZ1 I is:
D~~~ 22GI =is: :N

2AGZ = D AGZI + D 2GZI N[P2AGZII2AGZ]

Evaluating the terms,

Pz2AGZI = 0 ; jay2AGZ 1 = 0
Ix2AGZ = 752 + 2252 = 56,250; 0'.2AGZ 1002 + 2252 = 60,625.

A2AGZ = 0 + 0 + 56,250 + 60,625 = 116,875

0 'iAGZ = 2(56,250)2 + 2(60,625)2 = 13,678,906,250

The conditional probability of defeat given weapon type I and no DGZ shift is:

925 -- 1AGZ ] =p[<.2

Pdefeat(21wl, a,,s,agg1) = P[ DA2  <d 2 w] = P[ Z < 9 l 4AGZ I  P[ Z<6.32

- 1.0

We note that this result is identical to the result obtained against unit #1 with weapon #1, no DGZ

shift; this is due to the fact that the units are identical.

(2) No DGZ shift, Weapon type 2:

Again, the units are identical, so the result is identical to the result obtained against unit #1 with

weapon #2, no DGZ shift: 13552 - P AGZ2

Pdefeat( 21 'V2, s,', agg ) = P( D AGZ < da]=P[Z< AGZ 2

1AG 2 - 1W 2  -[ . A GZ 2
= P( Z < 29.209J -1.0

(3) DGZ shift. Weapon type 1:

Recall that rwP = 2670 and E[ DzpJ = 5,065,625. Thus

/31 = - 1.186

4E[ D22 P]

The shifted DGZ coordinates are:

XAGZa = /X 2 L + ( 1-3 ) XPI =3 ( X2 +TX 2 ) + ( 1- )xpI

Y A GVI= Y Y2L + ( 1- ) YPI =3 ( Y 2+TY 2 ) + ( 1-/3) YP
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Thus

X A GV - X 2 = ( flI ) X 2 + fi TX 2 + ( 1-fl XP1 + OX 2 and

Y A GV - Y2= (fl3-1 ) Y 2 + fi TX' 2 + ( 1-fl YP1 + O' 2.
Let M z2 A GZ E[X AGZ.-X2] = (13-')P,,2 + 011t.2 + ( 1fl ) XP1 + 11=2

,Uy2 A GZ E[Y AGZ-Y2] = (0l-')P,2 + flpt, 2 + ( 1-fl ) YP + Ucy2

* 2  Var[YGS- 2  = (f3_1) 2 0, 2 + 0l2 0, 2 + c2

2 AG GZZSO AG AGZ8  +2 2 x 7x
Y2 A : 1 GIY 1  (2AG 1 ~Y2AGZtY +I~

a 2 Z 2a 2  2 2 Py 02 VZ(72AGZ+2 P 2AG
2 A Z', 2AGZs1 oz2AGZI 2 A GZ) + 2A I 2AV Y G

Then the squared distance between the AGZ (based on a shifted DGZ) for weapon of type #1 anld

the unit 2, D2AGz , is:

D2AGVa = D2 2AGZS + 2AGzaZ'N1pAGz.,o2AGZI]

Evaluating the terms,

~zAZ' 0.085(0) + 1.085(0) - 0.085(1000) + 0 = -85 2AZ

01 2 ~ (0.085 )2 (20002) + 105) 72 + 2252 = 85,628z2AGZs

~yAZ~=(0.085)2 (2002) + (1.085 )2(1002) + 2252 = 61,764

~2AGZ' 2( _85)2 +41 85,628 + 61,764 = 161,842

01G~ =) 2(85,628)(85,628 +(2)( -85)2) + 2(61,764)(61,764+(2)(-85 )2) =26,553,567,3,R7

or2AGZ = 162,953

The conditional probability of defeat given weapon type #1 and a DGZ shift is:

pdefedt(2lIw,, a2 , s, d-gg 2 ) = P[ D 2AGVa < d ~ 2 - 0 '2AGZ%

= Pf Z < 4.258 J1.0

(4) DGZ shift, Weapon type 2:

Recall that rwp = 3160 and E[ D 2 P] =5,065,625. Thus

fl2  2 p___ 1 1.404
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The squared distance between the AGZ (based n a shifted DGZ) for weapon of type #2 and the

unit #2, D2AGZ2, is evaluated as betore:
22 2 2

2AGZ 2 = 2GZ 2 +D AGZ1 N[ 2 A GZ, 1 2 AGZ 2

Evaluating the terms,

A z2AGZ 2 = - 0.284(1000) = -284 -- ]2AGZG2
0 'x2AGZ - (0.284)2(20002) + (1.284)2(752) + 1502 = 352,346

y A2AGZ2 = (0.284)2(2002) + (1.284)2(1002) + 1502 = 42,213

A2AGZ = 555,871

'2AGZa = 379,154,252,695; O2AGZ 2 - 615,755

The conditional probability of defeat given weapon type 2 and a DGZ shift is:

21 2 3552 - 2AGZ]

Pd efeat(21 w2 , a2 , s, ag 2 ) = P[ D2  < d 2 W2 P[ Z2AGZ 2

= P[ Z < 2.079] = 0.981

Section IV - COMPUTING THE DGZ AND DISTRIBUTIONS OF THE AGGREGATE TARGET

Computing f

Assume that target unit #1 has priority 1 and target unit #2 has priority 2. Recall that rT1 = r2

= 500 m. To compute a, we need to solve for f)12 - E[ D1 2 1 0 < D1 2 < ( d, w+d 2  
" ] for

w = 1,2. From p. 33 of CAA-RP-89-3, if a variable U - N( p, -2 ) then

E[ U I(A < U < B = + _[a__] -z~

where Z(u) = e- 2 and 1(u) is the standard normal integral evaluated at u.

In our problem, U = D 2 , B =(d w+d 2 w) ,A = 0, , = E[ D12 ] ando = Var[ D 2 ].
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Weapon #1:

Recall that d Wl - d2 w = 925, and E[ D1 2 ] = 9,249,250. Then using the priority and target

unit size criteria for establishing a. In this problem, U = D12 , B d, ( d 1 W+d 2 w1)2 , A = 0, p -

ED12 1 and o" = Var[ D12 ]. Thus
f)2 2 )2 r286-.3501r

1 2 = E[ D1 2 I D1 2 < ( d1 w+d 2 w) 2 ] = 9,249,250 + L.304 207j 11,335,667) = 1,768,300

and D1 2 - 1330.

a -- mind 2W

D 1 2

D)2 - d, WI rTr d2 Wi D 12 -d WI + [2- [1]
+ T 2 L f 1 2  D 12  max{ [1], [2 ]1jD)12  rT!rT D' 2 D1

Thus
a1  min 0.695; 0.305 + [0.695 -0.305][1 +]= min{0.695;0.598} =0.598

* I* 2 2J

Thus the aggregate target DGZ a for weapon #1 has the following coordinates:

XDGZI -= 1 XiL + (1-a 1 ) X2L; PzDGZI = 0.598(0) + (1-0.598)(0) = 0

YDGZa = a1 YIL + (1-al) Y2L; PyDGZ4 = 0.598(0) + (1-0.598)(1100) = 442.2 442

(1) Computing the distributions between DGZjI and preclusion areas 1 and 2:

(a) Preclusion area #1:

We can adjust for the fact that the target units are aggregated, thus D 2 < d22 w12

"pprec( ij wl, aij, aggij) = min{ P[ D 2  r42 p 2U. D 2 2  } andkDP k > rwk ij[ D 2d12 W1 ]  n

Pn o hiilt wl,ai, aggii m { P[ DD Pk > rvp D 2 < d12  I2~ >  'pl D 2 < d 1

Recall that ErDa2 ] - 9,249,250 Var[D 2 ] -" 11,335,6672

E[D p1] = 6,055,625 Var[D p ] = 6,951,0842

E[D2p] = 5,065,625 Var[Dp ] = 6,936,8262

Then using the formula on page 46 with A=0, B=dl 2 w-(2.925)2 , =E[D 2] and oV D.
ED 2 D 2 < 2 9,249,250 + 86.359 ( 11,335,667) - 1,768,300
- 2 D d 2 W ] 922 + 4-7207
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2 2 2 +F(-.816)(.286)-(-514)(350F _ F.286 -. 35012 'VarD121D2<5d12w -- 1 L+ .3--' --. 2 07 L.304-.207J 11,335,667

- 0.014 - 11,335,6672 = 1.799 x 1012 = 1,341,2702

Thus for a1 = 0.598,
E[D2 P[22 2 2_ 2 2 22

ID 2 <d 2 w ] = (aI-a)E[D 2 1D 2 <d 2 w] + aE[Dp 1 ] + (1-a)E[D~p

= (-0.240)(1,768,300) + (0.598)(6,055,625) + (0.402)(5,065,625) = 5,232,553

Var[ D2VP, I D12 < d 12 W1

= (a, 2 -a) 2 Var[D 2 D 2 <d 2  + a 1 2 Var[D p] + (l-a) 2 Var[D 2P]

= (-0.240)2(1,341,270)2 + (0.598)2(6,951,084)2 + (0.402)2(6,936,826)2

- 2.516 x 10'3; with IVar DD P ID1 2 < d 12 W ] 5,051,820

Thus
pD 2  2 2  2 17452 -5,232 553
L'Dp I >Wi 2  2 ] = 5,051,820 = P[ Z > -0.436] = 0.669Dr WpU 2 2 _-_

d
_____5,051,820

PDp > r2P11D 2<d 2 = P[Z > 26702-5,232'553
P[ I P2  12 - 1, -5,051,820 ]= P[ Z >0.3781=0.353

(b) Preclusion area #2:

Recall that

E[D1 2 ID 2 < d 2 w ] _ 1,768,300 Var[D, 2 ID12<d12 w12 W - 1,341,270'

E[D P2 ] = 6,865,625 Var[D p2 ] = 6,050,8422

E[D2p2] = 4,555,625 Var[D2p2] = 6,012,5442

Thus for a, = 0.598,

E[D ID1 d 2 w 1 ] = (a, 2 -a,)E[D 2 ID~ 2 <d~ 2 w1 ] + a1 E[Dp 2 ] + (1-a,)E[Dp ]

- (-0.240)(1,768,300) + (0.598)(6,865,625) + (0.402)(4,555,625) = 5,512,613

Var[ Di p2 ID12 <d12 W I I

- (al 2 -aI) 2 Var[D12 I D1 dt 2 w1 ] + a1
2 Var[D p2 ] + (1-a) 2 Var[D p2 ]

= (-0.240)2(1,341,270)2 + (0.598)2(6,050,842)2 + (0.402)2(6,012,544)2 =

- 1.904 x 10'3; with Var( D p2 I D1 2 <d 2 w1] - 4,363,360
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Thus

P D P >r 2 ID22< P[ Z > 12452 -5,512,613D 2 wP2 12 Dt- 12 W " 4,363,360 ] = P[ Z > -0.908] 0.818
P[ D2 > r2  D 2 <d 2 w - P[Z > 21702-5,512'6132 WP 2 12- 12W 1  4,363,360 ] = P[ Z > -0.184] = 0.573

Thus for weapon #1,

p5ec( 121 w, a12 , agg1 2 ) min P[ D2p > 2I 2 U ID 2 <d 2

k D k rw kU,1 12- 1d2W 1 I
m ain 0.669, 0.818

- 0.669

Pno shft(12 l wlja12 ,a9912 ) =min~ Pf D~D >rTV jD12 <dl 2 ,kp k  iPk d2W1
- min 0.353, 0.573

- 0.353

NOTE: The closest preclusion area for the aggregate target formed from units #1 and #2, weapon
#1 is preclusion area #1, so all weapon #1 DGZ shifts will be computed from preclusion area #1.

(2) Computing the probability of a DGZ1 shift:

To evaluate the probability of a shift in the DGZ for the aggregate target formed from target units
#1 and #2, engaged with weapon type #1, we need to calculate the distribution of the shifted DGZ.

We begin by evaluating 01. To do this, we need to evaluate

2 2 2

( P I a)E[D2 (D <(d W1+d 2 w )2] + E( a,) ( D vU12 1 u1
2 (1-ai)r (p 1 D2P + (1-c 1 )D <(-2d +d )
Wla1U DP o12 1 1 I  <r1 i "l(t-2 (d W

l d 2 W )

E[D1 2 I D1 2 < (d1 I w+d 2 w1) ] has been evaluated previously as 1,768,300.

To evaluate E aIDIP + (1-a,)DPI ar PU, + (1-a,)r, P < ajD 1 P I +

(1-a 1 )D2P < rw,2 + (a 1 -ar)(d ~ +d w,) 2 1, we need to determine the conditional

distribution of aI D2 I1P + (1-al) DP.
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Recall that
2 . 2 2 o2 n

A i pI -- ip1 + pyip + oip + diP,

SP 9
2o (u 2  +22 ) +2u 2  (a i ) +)

oiP1 = - zoP1 o.P 1  ZiP I yiP1 y iP+- yiP"

Then D? 2pN and the conditional expectation given aUr u +(1-al) r2

<_ D~p1 + (1-a,)D 2P < rw2 P1 + (a l-a2) (d, w1 + d2 w1 )2 can be found in the usual manner.

AI P, 6,055,625 i2P 1 = 5,065,625

o1 P 6,951,084 12P, - 6,936,827

Then a1 Mp I + (1-c 1 ) 2 p, = 5,657,645

Q!1" 2'2 PI + (1--a 1 )2 02p = 2.505 x 1013; square root = 5,005,484.

Let U a, DIp1 + (1-c)D 2p I ; AU = 5,657,645; o7U = 5,005,484;
A W a• U p U1 + E W P + (a l -a) (dj w1 + d2 W1)2; then

F.355-.3531(
Then E[ U IA < U < B] = 5,657,645+ L691314j(5,005,484) = 5,684,199

Thus E O 1 I < (d wi+d 2 w1)2 n A < U < B]

-- (0.5982-0.598) (1,768,300) + 5,684,199 = 5,259,107.

Recalling that r IP, = 2670, and defining
rwP

DDPI D 2 < (d, w +d )2 l A < U < B ,then a', " I"I = 1.164SI DDPI

The shifted DGZ coordinates are:

XDGZ '
XDGGa+ (1

-- + 3 ) Xp, ) 31 [ al(X,+TX1 ) + (1-a)(X2 +TX 2 )] + ( 1-31 ) XpI
Y DGZas

= 131 YDGZa + (1-0131) YPI = 131 [ ao(Y 1 +TYI) + (1-a)(Y2 +TY 2 ) ] + ( 1 -1 ) YP

Thus IDGZa =131 0a1[(PI+Pf.zI) + (1-aI)(P. 2 +f. 2 )1 + ( X1 P )x - 164

and PyDGZas = 31 [l(pjy+PtI) + (l-aI)(1' 2 +Ply 2 )] + ( 1-31 ) Yp 1 " 350

(a) Unit #1:

XDGZ2, - - (a 1 31 -1) X, + (1-a)3 1 X2 + aft3 1 TX I + (1-at)O3 TX2 + ( 1-3 ) Xp1

YDGZ." - Y (t13l-1) Y, + (1-a)13, Y 2 + a113 1 TY, + (1-a,)131 TY 2 + ( 1-3 ) YPt
Let P,DOGZaS E E[XDGZas-X] = (aP31-1)/zI +(1-a'))31P. 2 + C'[311txl + (1-C) 3,Pft2

+ ( 1-3, ) xI.
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1JDGZa -- E[YDGZa-Y] -- (ai/3 1-1)pyl +(1-oa)3IP 2 + o11.tyl + (l-a)/31pIf 2

+ ( 1-31 ) ypI
~ DGZa Var[X D GZs-Xl=(a/,) 2  ,+(1-)i)o 2

+ 2(afl/-1)((1--ai)3,)Pr,2 .z,°oz 2 + (aiI/3i)2at~, + ((1-,)31)2 0,

UDGZasE Var[YDGa-, (a,/3,-1) 2 0,21 + ((1-a,) /3 )2u, 2

2(a,1i-)((l-a)1)P,2 0"1'T 2 +y (a/3)2 l,
2.2

DGZ --' xaIDGZ1 -YIZ + pa ) DGZs + (1-DGZa )s Zas 3c'- vz'+ u c? + 2p; ) z +  2o-'z?
0"IDGZa- 2U"IDGZ(x(IDGZas+2P IDG3aS)I + .U 2 ,Dz?,DGZas+2p IDGZa-)

Evaluating the terms, recalling that a, = 0.598 and /31 = 1.164,

plo IDGZs = ((0.598)(1.164) -1)0 + (1-0.598)(1.164)0 + 0.598(1.164)0

+ (1-0.598)(1.164)0 + (1-1.164)1000 = -164

PyI DGZa' = ((0.598)(1.164)-1)0 + (1-0.598)(1.164)1100 + 0.598(1.164)0

+ (1-0.598)(1.164)0 + (1-1.164)1000 = 351

'71DGZ , = [(0.598)(1.164) -1]2 (2000)2 + [(1-0.598)(1.164)]2 (2000)2

+ 2[(0.598)(1.164) -11(1-0598)(1.164)j(0.5) (2000)2 + [0.598(1.164)12 (75)2

+ [(1-0.598)(1.164)]2(75)2 = 680,629

y iDGZas = [(0.598)(1.164) -1I]2 (200)2 + [(1-0.598)(1.164)]2 (200)2

+ 2[(0.598)(1.164) -1][(1 -0.598)(1.164)](0.9) (200)2 + [0.598(1.164)]2 (100)2

+ [(1-0.598)(1.164)12(100)2 = 9,248

'l DGZ~~ "= 844,527

1DGZas = 1.007 x 1012; 0.1DGZ = 1,003,453

(b) Unit #2:

XDGZas - X2 = 0' 1 31 XI + (31-0l1-1) X 2 + a,/31 TXI + (1-ai)3 TX 2 + ( 1-03 ) Xp

YDGZas - Y2 = 0I31 Y, + (i31-a,31 -1) Y 2 + a,/31 TY, + (1-a,),3, TY 2 + ( 1-3 ) YPI

Let Pr2DGZa, - E[XDGZaS-X2] = al,1,pzi +(I3-a,/3,-)p 2 + aCfl3P 1 x, + (l-C,)3ptx2

+ ( 1-0,) XpI

I1 y2DGZa =- E[YDGZa-Y2] = aflPy, +()3-a 1 3-1)Py2 + C'101-tyl + (1-'d)3lPty2
+ ( I-3, ) YpI

0.
2  = Var[X2 (,101)

2
0, +=2G a ---X 2-1 x x2

+(c11)2 ,2 1 + o

+- 2 (4l)(fl-a/3,-1)pz, 2 or/oz + (a,13) #, +

G-24



CAA-RP-89-3

0 . a2 s Var[YDGz y2] (al) 2 o.1  + () -a l,) 2 o 2=i) + (aj'- 2aI +1) l_'0. :0,

+ 2(ca1 =1)((3 1-azI3z-l)py1 2u'iu' 2 + ( )-
2 2 2

20as = pas2Dz + / 2DGZ° + 0.x2DGZaJs + or
1 1 I2DGZa8

= 2 2 2 2  2 2
2DG. s x2 DGa07xD~a+, z2DGZa3 2GD Z~2 G

Evaluating the terms, recalling that a, = 0.598 and i, = 1.164,

"r 2DGZa3 = (0.598)(1.164)0 + (1.164-(0.598)(1.164)-1)0 + 0.598(1.164)0

+ (1-0.598)(1.164)0 + (1-1.164)1000 = -164

Py2DGZas = (0.598)(1.164)0 + (1.164-(0.598)(1.164)-1)1100 + 0.598(1.164)0

+ (1-0.598)(1.164)0 + (1-1.164)1000 = -750

0. 2DGZ 8 = [(0.598)(1.164)]2 (2000)2 + [(1.164-(0.598)(1.164)-- )]2 (2000)2

+ 2[(0.598)(1.164)][ 1.164-(0.598)(1.164)-1 ](0.5) (2000)2

+ [0.598(1.164)]2 (75)2+ [(1-0.598)(1,164)]2 (75)2 = 1,592,629

0.22DGZ7 5 = [(0.598)(1.164)12 (200)2 + [( 1.164-(0.598)(1.164)- 1 )]2 (200)2

+ 2[(0.598)(1.164)][ 1.164-(0.598)(1.164)- 1](0.9) (200)2

+ [0.598(1.164)] 2 (100)2 + [(1-0.598)(1.164)12(100)2 = 11,712

U2 DGZ ,= s 2,193,737
0. DGZaS = 5.271 x 1012; 0.D = 2,295,845

Recall that Pshi.f( iiI w, aij, aggii)

2 2d2w2=[xmin{fP[DD P> rvpU, I D?. < dW]}I-min{P[DD Pk > r p D?]}]d.

2 22

[DGZa<d2wflD <G SdW

= [prec( ii I wai, agij) -p,,, shift ijw, aij,aggii

P[D2 DGZa<dsjw fDDGZas <dW]

paggr( ij w, ai3 )

We know that (assuming independence, as usual, between D2DGZGS and D2 DGZaS)

P[D 2  a <d~ nD 2  d 2

iDGZas d jDGZa <dW

1- P[Do2  a>dw] P[D2  .>d 2 w] + P[D 2  >diw]P[D2 DGZas > d;v]
DGZ1  jDG jjG-25
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Let
= 2 9252 - IDGZas

h, - P[DIDGZas>dw > G ] = P[Z > 0.0111 = 0.496
9252 - 2DGZ

ki E P[D2D S > d2 w] -P[ Z > 9 ] '2 P[ Z > -0.5831 = 0.720

2 2 2

Then P[DIDGZas < diWl n D2DGZas< d2 W I = 1 - hi - k1 + hik 1 = 0.141

Thus

Pshif( 121 w,, a12, a9, 2 ) [Tprec( 121 wl, a12, a9g 12 ) - p.o shif( 121 w, a12, a9g,2)

e[D',oz, , d , n D is, < d 2W
I DDGZas Id W I I2DGZ'S j I

paggr( 12 I w,, a12 )

[0.669 - 0.353] 0-141 = 0.093.0.480 -003

Weapon #2:

Recall that di W2 = d 2 w2 = 1355, and E[ D1 2 ] - 9,249,250. Then using the priority and target

unit size criteria for establishing a 2. In this problem, U = , B d, ( d w 2 +d t W) 2  A = 0, "

- E[ D12 ] and a Var D 2 ]. Thus

D12 = E[De 2 ID12 < (d, w2 +d 2 w,)2 ] = 9,249,250 + . -.3 11,335.667)

= 3,882,363 and D"- 1970

a 2 = min 2 w

D12 r rT I .+r DT2 f)12])[12 max{ [1], [2]

Thus

a2 = min{ 0.688; 0.312 + l [0.688 - 0.312] [1 + ] }min{ 0.688; 0.594 } = 0.594

Thus the aggregate target DGZa for weapon #2 has the following coordinates:

XDGZ "= 0 2 Xl L + (-a 2 ) X 2 L; I'DOGZI = 0.594(0) + (1-0.594)(0) = 0
2 2

YDGZa a 2 Y1 L + (1-a 2 ) Y2L; layDGZ' = 0.594(0) + (1-0.594)(1100) = 446.6 -447

NOTE: This DGZ is sufficiently close to the DGZ computed using weapon #1 that the same DGZ

could be used in practice. However, for purposes of illustration, I will compute the various

probabilities for the second weapon using the a 2 value of 0.594 with (uxDGZa , PyDGZa) = (0,447).
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(1) Computing the distributions between DGZ2 and preclusion areas 1 and 2:

(a) Preclusion area #1:

We can adjust for the fact that the target units are aggregated, thus D22 < d 2 w2 .

"prec(iji W2 , aij, aggij) = mn { P[ D2P > r 2  2 < d 2 w } and

Pno Aift( ijf w2,aj, aggii) = min { D [ > rWp D1 2 < d2
ke k D 2 12 }

22222 "2

Recall that E[D2 2 ], Var[D12 ], E[DP I], Var[DIp ], E[D2p1], and Var[D2p ] remain the same.

Then using the formula on page 46 with A=0, B=d2w 2 = (2.1355)2, j=E[D' 2] and

o =Var[D, 2 ],
E 2 2 2 ['.286-.3931]

E[D12 1 D1 2 < d12 w2 = 9,249,250 + 1.433_.207] 11,335,667) = 3,882,363

VaD2  2 d 2 w } f1  -. 816)(.286--.l68)(393l [F.286-.393]2 '
1DzD2 s d2 ] 1 .433-.207 j .433-.207j • 11,335.667

- 0.036 11,335,6672 = 4.626 x 1014 2,150,8002

Thus for cr 2 = 0.594,

E[D2p 1 ] D22 < d 2 w] = (C 2 -a2  )E[D 2 2 D 2 < d 2 w 2 ] + a 2 ED2P] + (1-c 2)E[D 2

= (-0.241)(3,882,363) + (0.594)(6,055,625) + (0.406)(5,065,625) = 4,717,399

Var[ DPI ID 1 2 < d12 w 2 ]

(a2 -a) 2 Var(D'21 D 2<d 2 W2 ] + a 2 Var[D'p 1+ -22a2 ) 2a r[D P

= (-0.241)2(2,150,800)2 + (0.594)2(6,951,084)2 + (0.406)2(6,936,826)2

= 2.525 x 10'3; with 1Var[DD pI D1 2 < d12 w2] = 5,024,800

Thus
[ D2  r 2  [D 2 < d 2 w ] P[ >18052 - 4,717,399

P(DDP >r W2PIU12 - 2 5,024,800 ]=P[Z>-0.290]=

0.614

P(D 2P > rW2 D 2 < d2 - P[Z > 31602 -4717'399SD2 1 - 2 W 5,024,800 1 - Z > 1.048 - 0.147
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(b) Preclusion area #2:

Recall that E[D}2I D 2 < d 2 w2], Var(D 2 D 2 < d 2 w], E[DIp2], Var[Dp 2 ], E[D2p2],

and Va[D~p2] remain the same.

Thus for a2 = 0.594,
[D D1 o 2 2 E[ 2 ]  2 ( a)EDp,

[Dp 2ID 2 < d 2 w 2 ] = (a 2 "-a 2 )E[D121 D1 2 < d12 w2] + a 2 E[D P2 ] + (1-a 2 )E[D2

= (-0.241)(3,882,363) + (0.594)(6,865,625) + (0.406)(4,555,625) = 4,992,116

Var[ DD P21 D 2 < d 2 W2

= (a 2
2 _C 2 )2 Var[D'21 D'2<d 2 2 +a 2

2 Var[ D P2 ] +( l a 2 )2 Var[DP 2 ]

= (-0.241)2(3,882,363)2 + (0.594)2(6,865,625)2 + (0.406)2(4,555,625)2

-- 1.915 x 10'; with ,Var[DDp2 1 D1 2 < d12 w ] = 4,375,600

Thus
D2> WU2 D2_ d2 ]  [ 13052,,0- 4,992,116

P[ D 2 >r 2 P2 p 1 D12 < d12 W [ Z > 35, 6 ] = P[ Z > -0.752] = 0.774
P 2 2 226602 -4,992116

PDDp2>r w2p 2 I D1 2 < d 2 w_2] = P[Z >2 4,375,6092 ]= P[ Z > 0.476] = 0.317

For weapon #2,

1hrc(121 w 2 , a1 2 , aggj 2 ) = min P[ D k 2 2k ~~ k W2P k U12 22W

= min {0.614, 0.774 }

= 0.614

Pno hif( 121 w2 ,a1 2 , agg1 2 ) = mi/& P[ D2p k > r2p I D12 < d 2 w].
k D.k W2 k 12 1

= min 0.147, 0.317 }

= 0.147

NOTE: The closest preclusion area for the aggregate target formed from units #1 and #2. weapon

#2 is preclusion area #1, so all weapon #2 DGZ shifts will be computed from preclusion area #1.
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(2) Computing the probability of a DG 2 shift:

To evaluate the probability of a shift in the DGZ for the aggregate target formed from target units

#1 and #2, engaged with weapon type #2, we need to calculate the distribution of the shifted DGZ.

We begin by evaluating 032. To do this, we need to evaluate

E[ DDp IID 2 < (d, w2+d 2 W) 2 n a2r w2P, U, +(l-a 2)rw2p, U2

< r2 D~p +(1- a2)D~p <rw2 P +(a 2 -a2)(d , w2 +d 2 w,)2j
12 1 W21 1 2

- (a-a 2 )E[D 2 ID 2 <(d, w 2 +d 2 w 2)2] + El a 2 DI I +(1-a D 2)D 1 a r 2 PU2 2pP +(l- 2) P arwPU

+ (1-a 2 )rw2PU < o 2 DIpI +(l-a 2 )D 2 P <rW2 P1 +(a 2 -C()(d, w 2 +d 2w) 2

E[ D 2 1 D2 2 < (d, w2+d 2 w2) 2 ] has been evaluated previously as 3,882,363.

Recall that

A I = 6,055,625 P2P1 = 5,065,625

o1 p 1 6,951,084 02PZ = 6,936,826

Then a, ppI + (1-al)p2 p = 5,653,685

2p + (1- 1 )20.2p = 2.491 x 1013; square root = 4,998,000
I PI 2

Let U= aIDIp I + (1-a 1 )D2p,; MU = 5,653,685; oU = 4,998,000;

A 2  +(-a•)r2 U B - r 2  + (a 1 -a ) (d1 v + d 2 w) 2 ; thenW2 P I 2+ -  ) U2 , =2 1 2 2
F.356 -. 180]

Then E[ UIA<U<B] = 5,653,685 + [ :889--.31 (4,998,000) = 7,110,345.

Thus E[ D2 PI D12 < (d, w +d 2 w) 2  A _<U<B

- (0.5942-0.594) (3,882,363) + 7,110,345 = 6,174,059

Recalling that rw2P1 = 3160, and defining

ODP jE[ P I D12 < (d1 w 2 +d 2 w) 2 A < U <B] then 0: = r------ 1..72.
... 1 2DDP

1

The shifted DGZ coordinates are:
X3cz

DGZ'2

= 32XDGZ4 + (1fl 2 )XI =2 f[a 2 (Xz+TXB) + (1-a 2 )(X 2 +TX 2 )] + (1-3 2 )XP

32 2YDGZ'2 + ( 1 - 3 2) YP = I2 [a2 (Y,+TY,) + (1 -a 2 ) (Y 2 +TY2 )]I + 1('0 2) YP 1
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Thus = 2DGZ" = 32 [ °2( UZi+Ptxl).+ (1-a 2 )(Pz 2 +At. 2 ) H + ( 1-2 ) Xp -72

and DZa = 02 [ a 2 ( Py1 +p-Aty) + (l-a2)+(]y2-1 ,y 2 ) I + ( 1-32 ) YP 2

ia) Unit #1:

xDGZq3 - X1 = (02232-1) X, + (1-a 2 )3 2 X 2 + 021 2 TX1 + (i-a2)32 TX 2 + ( 1-0 ) Xp
2

YDGZas - Y= = (a 2 ,32 -1) Y 1 + (i- 2 )3 2 Y 2 + C2132 TY, + (1-02)22 TY 2 + ( 1-0 ) YPI

Let pI DGZq- = E[XDGZas-XI] = (a 2 0 2 -) 1xi +(1-o 2)P21Px2 + o2132PtI1

+ (1-o 2 )32 Pt.2 + ( 1-32 ) Xp I

1 E[YDGZ ,YI = (o 2 232-)PYl +(l--2)2ay,2 + a022 tl

+ ( 1 -2)02Pt2 + (1-;32 ) YPI

DGZs -- Var[XDGZas-XI] (o 2 /32 -1) 2 ox + ((1-a 2 )3 2)'x 2

+ 2(0221)(( 1 2 )22)P , 1 2 1,1o1,2 + (02)2a:1 + ((1 fx2

DG Var[YDGZas-Y 1] = (a202- i)y I + ((1-a2)32) y2
, 2 DGZ2 2 2

+ 2(a23 2 -1)((l- 9 )132 )P,12 ylf y 2 + (a222)20", + ((i-o2)02) 2
0y2

I 1 DGZa - P DGZV" + )4 1 DGZaS + 6: JDGZ' + 0'y i DGZ43
2 2 2 2 " 2

Evaluating the terms, recalling that a2 = 0.594 and 32 = 1.272,

P DGZ = ((0.594)(1.272) - 1 ) 0 + (1 -0.594)(1.272) 0 + 0.594(1.272) 0

+ (1-0.594)(1.272)0 + (1-1.272) 1000 = -M27

I, DGZa, = ((0.594)(1.272) - 1 ) 0 + (1-0.594)(1.272) 1110 + 0.594(1.272) 0

+ (1-0.594)(1.272)0 + (1-1.272) 1000 ='295.6

04, DGZe' = [(0.594)(1.272)--I]2(2000)2 + ((1-0.594)(1.272)12(2000)2

+ 2[(0.594)(1.272) -1 ][(1 -0.594)(1.272)](0.5) (2000)2

+ [0.594(1.272)12 (75)2+ [(1 -0.594)(1.272)]2 (75)2 = 804,265

riI DGZ ° - [(0.594)(1.272) _ 1]2 (200)2 + [(1 -0.594)(1.272)]2 (200)2

+ 2[(0.594)(1.272) -11[(1 -0.594)(1.272)](0.9) (200)2

+ [0.594(1.272)]2(100)2+ [(1-0.594)(1.272)]2(100)2 = 12,345

UI DGZd' = 977,972
7I DGZ4 = 1.536 x 1012; o rDGZ S - 1,239,480.
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(b) Unii #2:

XDGZaS - X 2 - ' 2 132 X 1 + (132 -a 2 132 -1) X2 + a 2132 TX1 + (1-C'2 )032 TX 2 + ( 1 -3 ) xp

YDGZq' - Y2 = a 2/ 2 Y1 + (3-a 2 2- 1 ) Y2 + a2/3 2 TY, + (1-a 2 )132 TY 2 + ( 1-3 ) YP
2 

1

Let Pz2DGZS = E[XDGZ -X2] = a13 2 1.l +(132 -a 2 /32 -l)Pz 2 + a 2 032Ptz1

+ (1-0,2 )022Ut. 2 + ( 1-32 ) Xp1

v2DGZ* - E[YDGZa-Y2] = a 2j3 2 Pyl +(/3 2 -a 2132 -1) P2 + a 2 132 Ptyl

+ (1-a 2) 2p,.:,2 + ( i- )PI

2 as E Var[i + 2 " 2
'z2DGZ - Var[XDGZ -X2] (a2/32)x + (132-C'2 'z22 2

2(a2012 )(3 2-a 2 32 -l)Pzi 2Uia 2 + (a 2 032) 2 i1 + ((1-a 2 )/02 ) oi 2

y2DG Var[YDGZas-Y2] = (a2 0 2  +0 a,

+ 2(a 2132 )(/] 2 -C 2 2 -1)P 1 2 , 1 ,o 2 + (a 21 2 )2 it, + ((1-o 2 )3 2)
2 0 y2

z2DG2aS y2DGZ2 ' z;2DGZ. GZ
0-2 Zaja9 2 + 2 72 2G22

2DGZas - z2DGZ( z2DGZ2 ' -z2DGZas) + 2U;2DGZa,,(17 2DGZ3 +2p 2DGZs)

Evaluating the terms, recalling that a 2 = 0.594 and 02 = 1.272,

px2DGZ4" - (0.594)(1.272)0 + (1.272-(0.594)(1.272-1)0 + 0.594(1.272)0

+ (1-0.594)(1.272)0 + (1-1.272) 1000 = -272

Py 2DGZ$ -- (0.594)(1.272) 0 + (1.272-(0.594)( 1.272)-1) 1100 + 0.594(1.272)0

+ (1-0.594)(1.272)0 + (1-1.272)1000 = -804.4

2
o

2 r20GZ 5 = [(0"594)(1"272)12 (2000)2 + [( 1.272-(0.594)(1.272)-i1]2 (2000)2

+ 2[(0.594)( 1.272)][ 1.272 -(0.594)(1.272) -1 ](0.5) (2000)2

+ [0.594(1.272)] 2 (75)2+ [(1-0.594)(1.272)]2 (75)2 = 1,764,265

* 2 DGZ ' = [(0.594)(1.272)]2 (200)2 + [(1.272-(0.594)(1.272)-1 )]2 (200)2

+ 2[(0.594)(1.272)][ 1.272-(0.594)(1.272)- 1](0.9) (200)2

+ [0.594(1.272)]2 (100)2+ [(1-0.594)(1.272)]2 (100)2 = 14,264

/2DGZ a - 2,499,572
DGZ S "-- 6.785 x 1012; 2,604,745
2D 02 DGZa8  ,60,4

2 2

2=P[DIDGZa'> dIW =p >1355( Zl DGZ> a = P[ Z > 0.692] = 0.244
2

k,PDDGZ>d2 W 2 PZ >1355 -- 2DGZ ] - P[ Z > -0.2551 = 0.601
Then P[D d2 n 2 2

Then Pf DG2a' I < , D2  < d 2 W = 1 - h1  k, + hk 1  = 0.302.
TePDGZ d  DGZ, - w2 ]
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Thus

p,,jfj( 121 w2 , a12 , a9912 ) =E [ prec( 121 W.2 , a12, agg12 ) - hjf( 12 1 W2 , a, 1, agg1 2)

P IDDG - dWfDDGZa*<d2W

Paggr( 12 1 W2, a12 )

= 0.614 - 0.147] 0.302 =029

Comnputing the AGZ and conditional defeat distributions of the aggregate target

Let AGZ, denote the AGZ from firing the weapon of type 1 and AGZ,, denote the AGZ from

firing the weapon of type 2.

(1) No DGZ shift, Weapon type 1:

XAGZ= XDGZ +X =t( X+ TXl ) +(1-al)( X 2 +TX 2 )+ CXI

= al XI + (1-ai) X2 + a, TXI + (1-a 1 ).TX 2 + CX,,

YAGZ = a1l YI + (1-al) Y 2 + a1, TY, + (1-a 1 ) TY2 + GYp. Thus

(a) Unit #I:

XAGZI - XI = (a 1 -1) XI + (1-a 1 ) X2 + ail TX, + (1-a 1 ) TX2 + CX1 and

YAGZI - Yl= (C'1 -1) Y1 + (1-a 1 l) Y 2 + a1, TY, + (1-al) TY2 + CX',.

Let 1 ZIAGZ I E[XAGZ-Xl] = (-lpi+ (1-a,p 2 + alutzl + (1-a,)pI't 2 + '
1 cx1

Py I AGZ I E[YAGZ-YI] (al-Olu~ + (1-a1,)Uy2 + ajtyl + (1-lAtp, 2 + /Pcyi

xAG 1  Var[XAG -X 1  = (a 1 -1) 2 u,21 + (I1-a1 )2 , o2 + 2(ai-1)(1-a)Px1 2 ~'7 4z

+ a1
2 Olz + (1-a 1 ) O.tz1 + a .z

01 2 lAZ Var[YA, -Y1] = (a 1 -1) 2 o.21 + (1-a 1 )2 a. 2 + 2clI(-lPlo,0,

+ a y + (1_0a1 )2 02 +. +.

2 2 2 2
PI1AGZI P~x IA GZI aY ,.Z +, XI AGZ1 + aypIAGZI

2IG 1 2a (0 +2p,uXAGZ + 2 .IAGZ (O AaZ +2p,u IGZ)21G 2u2  GZ (a.AGZI

G-32



CAA-RP-89-3

Then the squared distance between the AGZ for weapon of type #1 and the unit #1, D A GZ I is:

D2 1= D2  + D 2 IGZ AN[pA aZ 2
4 Z

IAGZ- ZIAGZ I D 1  "N[AGZ,'1AGZ1]

Evaluating the terms,

Ax1AGZI = (-0.402)0 + (0.402)0 + (0.598)0 + (0.402)0 + 0 = 0

#yAGZI = (-0.402)0 + (0.402) 1100 + (0.598)0 + (0.402)0 + 0 = 442.2

2 1 =GZ- (= 0.402) 22000 2 + (0.402)220002 + 2(-0.402)(0.402)(0.5)2000 2

+ (0.598)2 752 + (0.402)2 752 + 2252 = 699,962

y1 A GZI = (-0.402)22002 + (0.402)22002 + 2(-0.402)(0.402)(0.9)2002

+ (0.598)2 1002 + (0.402)21002 + 2252 = 57,110

IlAGZ1 - 952,613
1 2AGZ 1.031 x 1012; 1,A GZ 1 = 1,015,423

The conditional probability of defeat of unit #1 as part of an aggregate target (with unit #2) given

weapon type 1 and no DGZ shift is:

22925 2 _--41AGZl [Z _ - .9

Pdefeat( 11 wl, al 2 ,-, agg12 ) = P[ DIAGZ I<dI = P[Z < I AGZ1

= 0.462

(b) Unit #2:

XAGZ I X2 = a1 Xi -a 1 X2 + t 1 TX1 + (1-a 1 ) TX2 + CX, and

Y AGZ 1 -I Y2 = 91 Y1 -0 1 Y 2 + CI TY, + (1-a,) TY 2 + CY1 "

Let Yr2AGZt = E[XAGZI-X 2 1 = aI/lzI -a 1 p/J 2 + alptzl + (1--a 1 )Ptx2 + Pert

I~y2AGZ = E[YAGZ I-Y 2 ] = a 1 l
1 yi - 1riuy2 + a1ltyt + (1-a) tVj2 + ucyl

'7 2AG = Var(XAG -X 21 = al a. + (-a,) 2 ur 2 + 2(a)(-ot,)pi 2 0',PYa2

+ a 2 r 1 + (1-a 1 )2 0.2 + C2
2 2 22

0' 22AGZ I Var(YAGZ-Y2l = al a Yt + (-at) 2 u22 + 2(al)(-

+ a1
l 2 y + (1 -) 2 2

112AIGZ1  u 1 2AGZ I + Ay2AGZ, + a x2AGZ I +'Y,2AGZ,
-(u) G t+ 22

2 a2 ( AZ+ 2 2G (a 2 +21 2

2 A GZ - 2AGZ I A Z+ 2AGZ) +  2AGZ1 y2AGZ+, Y2AGZ)

Then the squared distance between the AGZ for weapon of type w and the unit 2, D2 A is:
-. 2 2 2

2AGZ D Dz2AGZ1 + D 2AGZ I -N[P2AGZ12AGZ1 G
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Evaluating the terms,

Px2AGZI = (0.598)0 + (-0.598)0 + (0.598)0 + (0.402)0 + 0 = 0

P2AGZ1 = (0.598)0 + (-0.598) 1100 + (0.598)0 + (0.402)0 + 0 = 657.8
x2 =GZ1  (0.598)220002 + (-0598)220002 + 2(0.598)(-0.598)(0"5)20002

+ (0.598)2 752 + (0.402)2 752 + 2252 = 1,483,962

' 22AGZI = (-0.598)22002 + (0.598)22002 + 2(0.598)(-0.598)(0.9)2002

+ (0.598)2 1002 + (0.402)2 1002 + 2252 = 58,678

JU2AGZ 1 = 1,975,340

U2AGZ = 4.513 x 1012 AGZ - ,124,320

The conditional probability of defeat of unit #2 as part of an aggregate target (with unit #1) given

weapon type 1 and no DGZ shift is:

9252_ P2 .2AGZ 1Pdefeat(2 w,, a12 ,-, agg 2 ) = 2<d = P[ Z 9< .2AGZ 1  = P[ Z< -0.527]

= 0.299

(2) No DGZ shift, Weapon type 2:

The squared distance between the AGZ for weapon of type #2 and unit i, DAGZ is evaluated as

before.

(a) Unit #1:

IA AGZ 2 = (-0.406)0 + (0.406)0 + (0.594)0 + (0.406)0 + 0 = 0

lay IAGZ 2 = (-0.406)0 + (0.406)1100 + (0.594)0 + (0.406)0 + 0 = 446.6

21 A GZ = (-0.406)2 20002 + (0.406)2 20002 + 2(-0.406)(0.406)(0.5)20002

+ (0.594)2 752 + (0.406)2 752 + 2252 - 712,881

02 1AGZ 2 = (_0.406)22002 + (0.406)22002 + 2(_0.406)(0.406)(0.9)2002

+ (0.594)2 1002 + (0.406)2 1002 + 2252 = 57,120

PI AGZ 2  969,453

o1Ar Z2 "- 1.068 x 1012; UIAGZ 2 = 1,033,680
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'The conditional probability of defeat of unit #1 as part of an aggregate target (with unit #2) given

weapon type 2 and no DGZ shift is:

pdefeat( l1w2, a12,-, agg12 P[D2AGZ <dW -= Pf Z 13552_ IAGZ 2  p Z < 0.8581 2 1 - o"I AGZ 2
= 0.799

(b) Unit #2:

Ax2AGZ 2 = (0.594)0 + (-0.594)0 + (0.594)0 + '(0.406)0 + 0 = 0

Ay2AGZ 2 = (0.594)0 + (-0.594) 1100 1- (0.594)0 + (0.406)0 + 0 = -653.4

o'x2AGZ2 = 712,881

22AGZ 2 = 57,120

2AGZ 2 - 1,196,933
O2AGZ2 = 1.120 x 1012; O 2AGZ 2 = 1,058,522

The conditional probability of defeat of unit #2 as part of an aggregate target (with unit #1) given

weapon type 2 and no DGZ shift is:

213552 - 2AGZ 2
pdefeat( 2 1W2 , a1,g, agg12) [D2AGZ2<d2_ 11 = [Z_ 2AGZ2 ]=P[ Z < 0.604]

= 0.727

(3) DGZ shift, Weapon type 1:

We have previously evaluated the distribution of the shifted DGZ for the aggregate target, with

random coordinates ( XDGTS , Y DGT, ). The AGZ coordinates ( X YAGZE ) may simply be

determined by adding the random variables for the CEP shift in the X and Y directions ( CX I and

CY, respectively) to the X and Y coordinates of the DGZ. Thus

XAGZ I -= XDGZs + CX/ and YAGZ = YDGZ ' + CYI.

(a) Unit #1:

xAGVa - XI

= (ctli1-1) XI + (1-a)/1  X2 + c13 TX I + (1-a)O1 TX 2 + ( 1-0 ) Xp1+ CX1

=X aZ - X1 + CX1
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Y AGZ" - Y
=1 a31-1) Y1 + (1-aI13 1 Y 2 + a113 1 TY, + (1-a 1 ))3 1 TY 2 + ( 1-0 ) YP I+ GY1

= Y DGZas - Y 1 + CYl

Let

'~AG '= (ap 1-1),U.,, +(1 -ilfi 'Px2 + a1/ 1I ix + (1-'I)3I~ti', 2 + (1-0 1 ) )XP+ Jj

- ZIDGZas + 'UCzl

4 ~YIDGZa3 + IACYI

%AZ-Var(XGs-- 2 aI~l 2 ~

+ 2(~fl-1)(l-a))P-r1 2 'xO'.r 2 + aiIiOl'tzi + (1-ak1 )lo-W + cr

O2 2
- DGas + 17czl

VarEYAG YJ = (cr1 I3j-1) 2o'~1 + ((l-a)3 1 ) 2 o. 2

+ (a31 1(-' 1 )03 1 )P 1 2 aI'y~ 2 + aIOIOj~ + (1-a)3 1 uty + YI

- UIDGZa. + ;y

Al A GZ, ' "zAGZ,' +4lG 1 0rAGZ yAGZ'l

17 G = 2a 2  2 2, + 2o-2 Az(0' 2 1 z+ 2p 2

Evaluating the terms, recalling that a 1 =0.598 and 01= 1.164,
1 1 xAGZ = 164 + 0 =- 164IAZ

I'y IAGZI --164 + 0 = - 164

IA 2 Z 680,629 + 225 = 731,254

2yAZ 9,248 + 225 2 = 59,873

PI AGZ 5 = 844,919

47GZ 2 1. 162 x 10 12; UIA 1,073,845IAV I GI=

The conditional probability of defeat given weapon type 1 and a DGZ shift is:

2 ~ 925 2_ III A GZ8

Pdefeat(l11 o, a12 1 s, agg12 ) = P[ D <d' ] P[ Z < 0". -1] P[ Z< 0.010]

=0.504 A V I 1IGV

(b) Unit #2:

x AGZ. X2

o a10 1 XI + (131 -a 1 13-1) X2 + 01 1 TX1 + (1-a)3 TX2 + ( 1-1 XPI + CX1

- XDGZaBI - X2 + CX 1
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Y AGZI - Y 2

-- cr131 Y1 + ()3-c )3-1) Y2 + a 1/3 1 TY, + (1-a )O3 TY2 + ( 1-j3 ) yp+ CY,

- YDGZS - Y 2 + CY 1

Let

Pz2AGZO -- a)31,pzl +(31-a,131-1) Pz2 + a'13,1/l + (1-a)3IPtr2 + ( 1-31)Xp,+ PcrI

P Iz2DGZas + P-1

1y2AGZ'l -- 0/3,I.Al +(15,-a,3,-l) i, 2 + aI3i'p. + (1-r )I3 ,pej2+ ( 1-I3, )YP,+ cy

= ly2DGZaS + Icyl
'2AGZ - Var[XaGzU--X 2 ] 312o2 + (I3,-a/3,-1) 2 a 2

2 2

+2(afi,)(3,-a,3 -)pz, 2tizu 2 + a 1 o1tl + (1-a,)/r, + aCx

Or2
z2DGZas + O;C,

Y2AGV, Va[A GVZ-Y2I y2+

2 2 2
+ 2(crp3,)(I31-a,,L31--)Py1 2uo, 2 + C'30t + (1-a 1 )I3,uty, +±YY

-
0 2DGZ-7- + 2"YIi

AGZ + O 2AGZ + Y2AGZ'I
2 - 2 2  +2 12  + 20.2Az(o2A +2P 2

2GZ AGz2AGI 2 A GZI AV Zj 2AGI

Evaluating the terms, recalling that a, = 0.598 and 31 = 1.164,

P2 AGzV = -164 + 0 = -164

I 2AGZI = -- 750 + 0 = -750

2AGZ 1,592,629 + 2252 = 1,643,254

"i,2A'Z - 11,712 + 2252 = 62,337

2A GZ' 2,294,987
P 2 A I'12AGZ' - 5.725 x 1012; O2AG - 2,392,780

The conditional probability of defeat of unit #2 given weapon type 1 and a DGZ shift is:

2 
2  9252- _2AGZ]

pdefeat( 2 1w, a, 2 , s, agg9,2) = P[ D2 AGZ I < d2 1 P[ Z ] = P[ Z < -0.602

= 0.274

(4) DGZ shift, Weapon type 2:

We have previously evaluated the distribution of the shifted DGZ for the aggregate target, with

random coordinates ( XDGZas, YDGZas ). The AGZ coordinates ( XAGZ , Y 4 GZs ) may simply be
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determined by adding the random variables for the CEP shift in the X and Y directions ( CX 2 and

CY 2 respectively) to the X and Y coordinates of the DGZ. Thus

XAGZS2 - XDGZaS + CX 2  and YAGZ3 = YDGZ4S + CY 2 .

(a) Unit #1:

x AGZ" - X1

(a232-1) X 1 + (i-a 2)W32 X 2 + a 2'3 2 TX1 + (1-a 2 )3 2 TX 2 + ( 1-0 ) Xp 1 + CXI

YA G2 - Y2

= (a 2 0 2 -1) Y1 + (1-a 2 )132 Y 2 + a 2 32 TY, + (1-a 2 )132 TY 2 + ( 1-/3 ) ypI+ CY1

Let

Pxl1 AGZ2_ ('2132-1) 'Ur + (1 -a )3 2 ,x 2 + a 2/3 2PtxI + (1 -a 2 )132pt. 2 + (1-132 )XP+ PI j

P xIDGZaS + Pcx2

yI /IAGZs =(a 2 032 -1) Iyl +(1-a 2 )3 2py 2 + a 2 3 2 pyl + (l-a 2)3 2P1ty2 + ( 1-/3 2 )YP + /Icyl

"y IDGZas + Pcy2
a. 2 Va[X121 +20.2

' A -AGZ--Var[AGZB-Xl] = ( 21-1)32  x ((1-a2)2 x2

+ 2(a 213 2 -1)((l--o2 )13 2 )Pi 2 lo'z.02 + C'2 32 ' 1 + (1-a 2 )0200 2 1 + 0'2

2 2
x iDGZaI + 0, =2

20IaG S Var[YAz--] -" (C,202--1)2021 (- )20"92
2 2 2

+ 2(ak2 132 -1)((1-a 2 )0 2 )P 1 2 0yly 2 + a 213 2 07tyl + (1-a 2)3 2 0.Y1 + 0cyl

_a dr ,+~ .2 2~8+U
IAGZ2  lAGZDAG Z 2  nA 2 yZGZ

I G 2 AG .20,2

+ ., 2 2

UA GZ', n2  
(UAG I G 2 +1 AZ 1AGZ YAGZ2 Y 2GZ

Evaluating the terms, recalling that a 2 = 0.594 and /32 = 1.272,

zi AGZ= = -272 + 0 = -272

pIAGZ, = 295.6 + 0 = 295.6

XAGZ, = 804,265 + 2252 = 854,890

0 y2AGZ, = 12,345 + 2252 = 62,970

Al AGZ,2 992,140

0 , 1AGZ, = 1.723 x 10 12; A Z8 1,312,505
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The conditional probability of defeat given weapon type 2 and a DGZ shift is:

2 13552 _ )IA GZ]

Pdefeat( 1w2, a12 , s, agg, 2 ) = P( DA 8 < d W ] = P[ Z 1GI ~ ~ ~ -Ao"11 W2 P Z <I A  G 2

= P[ Z < 0.643]= 0.740.

(b) Unit #2:

XAGZ
2 - X 2

2

= a202 XI + (2-a22-1) X 2 + a2#22 TXI + (1-ae2)13 2 TX 2 + ( 1-02 ) xP I+ CX1

Y A GV2 - Y2

= a 2 132 YI + ()2-a 2 )32 -1) Y 2 + a 2 /2 TY1 + (1-a 2 )032 TY 2 + ( 1-03 ) ypI+ CY1

Let

P'r 2AGZ2- a 2 032 AxI +(13 2 -a 2 0 2 -1) P:2 + " 2 02Pxl + (i-a 2 )32 P tx2 + ( 1 - 32 )XP 1 + .cz1

"- Iz2DGZ2* + Pcz2

Py2AGZ2 = C 2 1 2 pyI +(1 2 -a 2t 2 -1) Py2 + c
2 0 2p JU, + (1- C

2 ) 2 A ty2 + (1-32 )yP I+ A cy
I

-- y2DGZas + Pcy2

a 2 Var(X -X 2 1 = (0'2 ,32 )2,2 1 + (0-a _1x2
x2AGZ2 + G2 x1-z 2 ) 2 ui.2 2 2

+ 2 (a 2 ,32 )(132-aC'2 2 -l)pl:e1z'lo 2 + C2 0 2OrtxI + (1-Cr)32o'tz + O'C1
OF2 2

z2DGZas + O'cx
2

0'; ~ 22G~ + 2Z a( , ,12,

~2AZ Va[AGV2-Y 2 ] =(a 2 )32)2 Y~ + (0 2 -C 2 132 -1)y 2

2~ 2 r
+ 2(- 2 0 2 )(1 2 -a 2 1 2 -l)py1 2 o' 1 o 2 + a 2:3 2Ay+ +  

(l-tA 2 )0 2of'A + O

- 2DGZas + cy

2 2 + 2A2 ( 2 A 2 Ay2AGZ2
2' 2u aL.. Zo+2, 02 2

~2AGZ2 z2AGZ2('72AGZ 2+2 z2AGZQ) + u2AGZ*(o'2AGZ 2 Y2 A Gza)

Evaluating the terms, recalling that a 2 = 0.594 and 02 = 1.272,

Pz2AGZ'2 = -272 + 0 = -272

Py2AG 2 = -804.4 + 0 = -804.4

012 1,764,265 + 2252 =
= 2252 =1,814,890

012 2AGZ 2 = 14,264 + 2252 = 64,889

P2AGZ2 = 2,600,822
2 2  7.301 x 1= 2,702,060
2 AGZ' 70x2AGG-
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The conditional probability of defeat of unit #2 given weapon type 1 and a DGZ shift is:

S2 W p[ <13552 - 'U2AGZ]
pdeeat(2W2, a2 s, agg2) D 2 AGZ ] P[ Z < <dG 2_A V -- 2- O'2AGZ 2

= P[ Z < -0.283] = 0.389.

Computing the probabilities of engagement of the aggregate target

Pengage( 1,2; -9 w,) = Pavaii( i) • Pvail(J) - Pno shift( 1,21 wI, a12 , agg12 ) • Paggr( 1,21 w1 , a1 2 )

= (1)(1)(0.353)(0.480) = 0.169

pengage( 1,2; sI w) = Pavail(') " Pavail(J) PAO( 1,21 w,, a12, agg12 ) " Paggr( 1,21 w, a12 )

= (1)(1)(0.093)(0.480) = 0.045

Pengage( 1,2; W2 i) = Pavail( i) Pail(J) Po shift( 1,21 w2 , a12 , agg1 2 ) • Paggr( 1,21 W2 , a1 2 )

= (1) (1)(0.147)(0.6?6) = 0.091

pengage( 1,2; S) W2) =Pastail(i) . Pwmil(J) "P,,hijj( 1,21 JW2 , a,2, a-g12) • Par( 1,21] w2 , a,2 )

= (1)(1)(0.229)(0.616) -- 0.141

Suppose that Prond( w1 I a12) = 0.4 and Pround( w2 l a12) = 0.6. Then

Pengage( 1,2; -9; wl) = pengage( 1,2; - 1 w1) Prond( wl a12) = 0.169 (0.4) = 0.068

pengage( 1,2; s; wl) = Pengage( 1,2; sf w,) Pr.nnd( 101a12) = 0.045(0.4) = 0.018

pengage( 1,2: -f; W2 ) = Pengage( 1,2; 1 I W2 ) " Profnd( W2 a a,2) = 0.091 (0.6) = 0.055

pengage( 1,2; s; W2 ) = Pengage( 1,2; s I W2) Pro nd( w2 a12) = 0.141 (0.6) = 0.085

SECTION V. COMPUTING THE PROBABILITIE OF DEFEAT

Computing the probabilities of defeat of target unit #1

Pdefeat( 11 w,) = Pdefeat( 1 w,, a,, aggl) • Pengage( 1, -9 1 )

+ Pdefeat( 1 w Oj, s,a-g) • Pengage( 1, sI wi)

+ Pdefeat( W wn, a12,-, agg12 ) • pengage( 1,2; - 1 1Wl)

+ Pdefeat( 11w1, a2, s, agg12 ) Pengage( 1,2; s I wl)

- 1.0 (0.309) + 0.744(0.161) + 0.462(0.169) + 0.504(0.045) = 0.530
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Pdefa( i w2 ) = Pdleat( iI w2 , a, s, a~g1 ) pegage( 1, 71 w2 )

+ Pdfeat( 1[w2, a,, s, agg1) " pegage( 1, sI W2 )

+ Pdefet( Ii w2 , a, 2 ,g, agg12 ) Pengage( 1,2; s 1 w2 )

+ Pdeeat( w2, a12, s, agg12) Pengage( 1,2; s w2 )

= 1.0(0.180) + 0.738(0.233) + 0.799(0.091) + 0.740(0.141) - 0.529

Pdefeat( 1, WI) -= Pdefeat( i w,, a1 , , agg9) Pengage( 1, 7, w1 )

+ Pdefeat( 1 wl, a s, agl) pengage( 1, s, wI)

+ Pdefeat( 1 w,, a12 ,7, agg1 2 ) pengage( 1,2; 7, wl)

+ Pdefeat( 1I w,, a12 , s, agg1 2 ) Pengage( 1,2; s, w,)

- 1.0(0.232) + 0.744(0.121) 4- 0.462(0.068) + 0.504(0.018) = 0.363

Pdefeat( 1, W2 ) - Pdefeat( 1 W2 , al,§, agg I) pengage( 1, f, tw2 )

+ Pdefeat( 1 W2, a,, s, dg ) • pengage( 1, s, w 2 )

+ Pdefeat( 1 w 2 , a12 ,-, agg1 2 ) " Pengage( 1,2; 7, w2 )

+ Pdefeat( 1 W2, a12, s, agg12) • Pengage( 1,2; s, w2 )

= 1.0(0.045) + 0.738(0.058) + 0.799(0.055) + 0.740(0.085) - 0.195

With only two weapon types available in this example,
Pdeleat( 1) = Pdeleat( 1, wI) + Pdfeat( 1, w2 )

= 0.363 + 0.195 = 0.558

Computing the probabilities of defeat of target unit #2

Pdfea,( 21 w1 ) = Pdefeai(21 wl, a2 ,T, d9g 2 ) " Pengage( 2, T wl)

+ Pdlet( 21 w,, a2 , s, ag 2 ) " pengage( 2, s I Wl)

+ Pdefeat( 2 I wl, a, 2 ,g, agg12 ) • pengage( 1,2; T [ w,)

+ Pdeat( 21 wl, a12-R, agg.2 )  pengage( 1,2; sl w,)

= 1.0(0.260) + 1.0(0.158) + 0.299(0.169) + 0.274(0.045) = 0.481

Pde fe,( 2f W2 ) = Pdejeat( 2 1 w2 , a2 ,S, ag 2 ) • Pengage( 2, S I w2 )

+ Paefat( 2 W2, a2, s, ag2) • pengage( 2, s1 W2 )

+ Pdefeat( 2 W2 , aj 2 ,-, agg, 2 ) * Pengage( 1,2; T 1 w2 )

+ Pdeeat(21 W2, a,2, s, agg,2 ) • pengag,( 1,2; s Iw 2 )

= 1.0(0.142) + 0.981(0.217) + 0.727(0.091) + 0.389(0.141) 0.476
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Pdefeat( 2, w,) - Pdefeat( 2 wl, a2 ,g, d 9 2 ) • Pengage( 2, -9, w,)

+ Pdefet( 2j w,, a2 , s, ag 2) • Pegage( 2, s, w,)

+ Pdefeat( 2 I wl, a, 2 ,7g, agg1 2 ) Pegage( 1,2; -T, wl)

+ Pdefeat( 2 1 wl, a12 , s, agg12) Pengage( 1,2; s, wj)

- 1.0(0.065) + 1.0(0.040) + 0.299(0.068) + 0.274(0.018) = 0.130

Pdefeat( 2, W2 ) = Pdefeat( 2 w2, a2,s , ag 2) Pengage( 2, -, w2 )

+ Pd,!fea( 2 w2, a2, s, a-gg2 ) Pengage( 2, s, w2)

+ Pdefeat( 2 W2 , a1e,2, agg12 ) Pengage( 1,2; §, W2 )

+ Pdefeat( 2 w2 , a, 2 , s, aggl 2 ) Pengage( 1,2; s, w2)

= 1.0(0.107) + 0.981(0.163) + 0.727(0.055) + 0.389(0.085) - 0.340

With only two weapon types available in this example,

Pdefeai( 2 ) Pdefeat( 2, wi) + Pdefeai( 2, w2 )

- 0.130 + 0.340 = 0.470
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APPENDIX H

EXAMPLE OF PROUND PARAMETER ESTIMATION

Section I - COMPUTING THE RELEVANT PROBABILITIES

Given Information

Suppose there are 10 targetable units with the following characteristics:

Unit # 1,2,3 : Infantry battalion Priority : 3

Unit # 4,5,6,7 : Tank company Priority : 2

Unit # 8,9 : Artillery battery Priority : 2

Unit # 10 : Missile launcher Priority : 1

Suppose there are 3 firing units available to attack these units:

Firing Unit # 1,2 : Artillery battery Weapon: I kt AFAP

Firing Unit # 3 : Missile launcher Weapon :10 kt missile

We have the following range information: For each firing unit, the following targets are in range:

Firing Unit # 1: Units # 1,2,4,5,8

Firing Unit # 2 : Units # 1,2,3,5,6,8,9

Firing Unit # 3 : All Units

We have the following fire preferences:

Unit # First preference Second preference

1,2,3 : Infantry bn. 10 kt missile None ( 1 kt too small)

4,5,6,7 : Tank co. 1 kt AFAP 10 kf missile

8,9 : Artillery bt. 1 kt AFAP 10 kt missile

10 Missile In. 10 kt missile None (all arty out of range)

If we combine the fire preference with the range information, we can tabulate a binary variable

RF( i,j, w) = 1 if unit i can be fired on by firing unit j using weapon w; 0 otherwise:

Unit 1 2 3 4 5 6 7 8 9 10

FU #1 I 1 0 1 1 0 0 1 0 0

FU #2 1 1 1 0 1 1 0 1 1 0

FU #3 0 0 0 1 1 1 1 1 1 1
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NOTE that the smaller yield weapon is always preferred in cases where either weapon is available

("bottom-up" allocation).

Computing the Probabilities

(1) Weapon # 1 ( 1 ki)

We are given the following values for paggr( iji wl , aij:

Unit 1 2 3 4 5 6 7 8 9 10

j - .4 .1 .2 0 0 0 .1 0 0

j =2 .4 - .6 .1 .3 .1 0 .1 .2 0

j= 3 .1 .6 - .5 .2 0 .1 0 .3 0

j 4 .2 .1 .5 - .4 .2 .1 0 0 0

5 0 .3 .2 .4 - .4 .2 .1 0 0

j=6 0 .1 0 .2 .4 - .4 0 .2 0

j 7 0 0 .1 .1 .2 .4 - .4 .1 0

" 8 .1 .1 0 0 .1 0 .4 - .1 0

j =9 0 .2 .3 0 0 .2 .1 .1 0

j= 10 0 0 0 0 0 0 0 0 0 -

We are given the following values for Pavail( i) and pprec( i: w1, aj, adg ):

Unit 1 2 3 4 5 6 7 8 9 10

pavil(:) .5 .6 .5 .7 .7 .7 .5 .4 .3 .2

1prec( ii .3 .6 .9 .4 .6 .8 1.0 .4 .9 1.0

From paggr( iiI wl, aij), Paail( i), and -fprec( iI w, a, agi ) we can compute Paggr( iI wl, a12 ). Recall

that Paggr(iI wl, ai ) = 1 - max{ paggr(ijI wl, aij) Pa,,aii(J) " .ec(j" w1, aj, ag 1 ) }. The

following table shows values for the ith column, jth row of paggr(ijj wl, aij) • Pavail() "prec(

w,, a*j, ag, ). For example, the calculation for z = 2, j = 4: Paggr( ijI wl, aij) = .1; Pavail(J) = .7:

Pprec(jI w,, a, a-g,) = .4; product = .028.
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z= 1 2 3 4 5 6 7 8 9 10

j =1 - .060 .015 .030 0 0 0 .015 0 0

j = 2 .144 - .216 .036 .108 .036 0 .036 .072 0

- 3 .045 .270 - .225 .090 0 .045 0 .135 0

j = 4 .036 .028 .140 - .112 .056 .028 0 0 0

= 5 0 .126 .084 .168 - .168 .084 .043 0 0

= 6 0 .056 0 .112 .224 - .224 0 .112 0

j = 7 0 0 .050 .050 .100 .200 - .200 .050 0

j= 8 .016 .016 0 0 .016 0 .064 - .016 0

j = 9 0 .054 .081 0 0 .027 .027 .027 - 0

j= 10 0 0 0 0 0 0 0 0 0 -

Choosing the largest value in each column gives us max{ paggr(ijl wl, aij) Pavaii(J) "prec( J

W,, , agg) } with the corresponding j* that maximizes the product. Thus "aggr( ij w1 , ai ) values for

I = 1. ..... 10 are:

Unit 1 2 3 4 5 6 7 8 9 10

1aggr( ii .856 .730 .784 .775 .776 .800 .776 .800 .865 1.0
* ) 3 2 3 6 7 6 7 3 -

We are given the following values for jpre( ii w, ai, ag i ), Pnoshift( 'I wl, ai, agi ), and

Phift( 'I wl' ai, aggi ):

Unit 1 2 3 4 5 6 7 8 9 10

" prec( i 1 .3 .6 .9 .4 .6 .8 1.0 .4 .9 1.0

p,,0 shift .2 .4 .6 .2 .4 .5 .9 .3 .5 1.0

P hif( i .1 .2 .3 .2 .2 .3 .1 .1 .4 0

We are given the following values for -prec( ijjw,, aj, aggij), p, sht( ijj wl, at,, aggqj), and

Pshift(j w, aij, aggij ) for the j" values which maximize max{ paggr( iji W1, aij) • Pavail( J) * -prec( I

w1.ajag) }.-
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Pair 1,2 2,3 3,2 4,3 5,6 6,7 7,6 8,7 9,3 10

,- ii .5 .7 .7 .7 .7 .9 .9 .6 .9

P ii s 1ilt(/2" .2 .4 .4 .35 .4 .5 .5 .4 .6

phift( i .2 .2 .2 .3 .25 .35 .35 .15 .25

(2) Weapon # 2 ( 10 k)

We are given the following values for Paggr( ijI w2 , a,):

Unit 1 2 3 4 5 6 7 8 9 10

1 - .6 .3 .4 .1 0 .1 ..4 .1 0

j=2 .6 - ..8 .2 .5 .3 .1 .2 .3 0

,=3 .3 .8 - .9 .5 .1 .3 .1 .5 0

j 4 '.4 .2 .9 - .8 .4 .2 .2 .1 0

5 .1 .5 .5 .8 - .9 .3 .2 .2 0

j=6 0 .3 .1 .4 .9 - .8 .1 .4 0

7 .1 .1 .3 .2 .3 .8 - .8 .3 0

j 8 .4 .2 .1 .2 ..2 .1 .8 - .2 0

j= 9 .1 .3 .5 .1 .2 .4 .3 .2 - 0

j=10 0 0 0 0 0 0 0 0 0 -

We are given the following values for Pa,.i(i) and -prec( i w2 , ai, agg i )

Unit 1 2 3 4 5 6 7 8 9 10

Pavail( i) .5 .6 .5 .7 .7 .7 .5 .4 .3 .2

Pprec( i1 .2 .4 .8 .3 .5 .7 .9 .2 .7 1.0

From paggr( iji w2 , aij ), Pavaii( i), and Prec( ij w2, ai , aggi ) we can compute Paagr( iI w2 , a12 ). Recall

that -agr(l w2 ,a i ) = 1 - max{ paggr(ijl w2,aij) Paai(J) pec(Jl w2,ajagj) }. The

following table shows values for the ith column, jth row of Paggr( ij W2, aij) Pavai(J) " -prec(j

W2, aj, a7
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i 1 2 3 4 5 6 7 8 9 10

j = 1 .060 .030 .040 .010 0 .010 .040 .010 0

i = 2 .144 - .192 .048 .120 .072 .024 .048 .072 0

j = 3 .120 .320 - .360 .200 .040 .120 .040 .200 0

j = 4 .084 .042 .189 - .168 .084 .042 .042 .021 0

j = 5 .035 .175 .175 .280 - .315 .105 .070 .070 0

j = 6 0 .147 .049 .196 .441 - .392 .049 .196 0

j = 7 .045 .045 .135 .090 .135 .360 - .360 .135 0

i = 8 .032 .016 .008 .016 .016 .008 .064 - .016 0

j = 9 .021 .063 .105 .021 .042 .084 .063 .042 - 0

j= 10 0 0 0 0 0 0 0 0 0 -

Choosing the largest value in each column gives us max{ paggr(ij[ w2 , a22) • Paai(J) -Tpre(jI

w2 , a, ag) }. Thus 15.,r( iI w2, ai ) values for i = 1, ... , 10 are:

Unit 1 2 3 4 5 6 7 8 9 10

15ggr( i 1 .856 .680 .808 .640 .559 .640 .608 .640 .804 1.0

j* 2 3 2 3 6 7 6 7 6

We are given the following values for pree(i I iW 2 , ai, agi), Pno ShifJOi w2 , ai, aggi), and

"P,(if,( I w2, a2, ag i ):

Unit 1 2 3 4 5 6 7 8 9 10

Pprec( i1 .2 .4 .8 .3 .5 .7 .9 .2 .7 1.0

.o ift( ' .1 .2 .3 .1 .2 .2 .3 .4 .1 .9

Pshift ( i .1 .2 .5 .2 .3 .4 .5 .1 .5 .1

We are given the following values for prec( ijl, an, a 1 aggij), -,o hjf( Jjw, aj, aggj ), and

"ff i(ijf wt, ai, aggii) for the j* values which maximize max{ paggr( ijj wt, aii)• Pavait(J) T -p,ec(Jl

WI, aj, 4- ) .
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Pair 1,2 2,3 3,2 4,3 5,6 6,7 7,6 8,7 9,6 10

Ppe( iji .3 .6 .6 .5 .6 .8 .8 .5 .7

ift( iA1 .05 .25 .25 .2 .25 .35 .35 .2 .2

pffiff ( ijl .2 .3 .3 .25 .3 .4 .4 .25 .4

Computing the Conditional Probabilities of Engagement

Recall that Pengage( 9, 1 w) P.,ijaii) Pno shift( if w, aj, agg i ) • ggr( if w, a,) and

Pengage( i, s, I w) = Pavait(i) •Phift( il w, at, a-gi ) •aggr( iI w, a,).

Similarly, pengage( ij,-Y, I w) - Pavai( i) • Paai(J) "Pn shift( 'l w, aij, agg,,) , Paggr( iji w, aij ) and

Pengage( ii, S, I W) = Pavail( ') Paail(j) " Phit( ij3 w, aij, aggij) • Paggr( Ij w, aij )

(1) Weapon # 1 (1 ki)

Unit 1 2 3 4 5 6 7 8 9 10

Pengage( i,- .086 .175 .235 .109 .217 .280 .349 .096 .130 .200

pengage( i, s .043 .088 .118 .109 .109 .168 .039 .032 .104 0

Pengage( iI w .129 .263 .353 .218 .326 .448 .388 .128 .234 .200

Unit 1 2 3 4 5 6 7 8 9 10

pengage( ij, T .024 .072 .072 .061 .176 .070 .070 .032 .027 -

Pe,ngage( ij, s .024 .036 .036 .053 .110 .049 .049 .012 .011 -

pegage(i I .048 .108 .108 .114 .286 .119 .119 .044 .038

(2) Weapon # 2 (10 ki):

Unit 1 2 3 4 5 6 7 8 9 10

pengage( i,j .040 .082 .121 .045 .078 .134 .122 .026 .048 .180

Pe,tgage(i.s .040 .082 .202 .090 .117 .179 .152 .026 .121 .020

Pengage( iI w .080 .164 .323 .135 .195 .313 .274 .052 .169 .200
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Unit 1 2 3 4 5 6 7 8 9 10

pengage( ij,-J .009 .060 .060 .063 .110 .098 .098 .032 .015 -

Pengage( ij, s .036 .072 .072 .079 .132 .112 .112 .040 .030 -

pegage( ij1 A .045 .132 .132 .142 .242 .210 .210 .072 .045 -

If we combine the single and aggregate probabilities to get a probability that target unit i is engaged

either as a single or aggregate target, we get:

Unit 1 2 3 4 5 6 7 8 9 10

Pengage( isU ia W) .177 .371 .461 .332 .440 .567 .507 .172 .272 .200

pengage( isU ia W2 ) .125 .296 .455 .270 .437 .523 .484 .124 .214 .200

Section H - ESTABLISHING THE ALGORITHM FOR PARAMETER ESTIMATION

Theory

To develop a Monte Carlo estimate of the probability (by weapon type) that a round is available

for a given target unit, we begin by generating realizations of single and aggregate target sets. To do

this, we draw against the probability that the target unit is available for fire as follows:

ALGORITHM:

1. For each target unit i, i = 1, ... ,

2. Draw Ui - Uniform( 0,1 ).

3. For each weapon type w, w = 1 ... , nw,

4. Using j maximizing aggr( iij w, aij) • pail(jl w) • yprec(jI w, aj, affg,) },

if U i < pengage(i I w) + pengage(ij I w), let B(i,w) = 1

5. Also if U < Penyage( i I w), let A( i, w) = 1

6. End if

7. End loop on w

8. End loop on i

9. The available target set is generated as follows:

If B( i, w) = 0, target unit i is not available for fire

If A( i, w) = 1, target unit i is available for fire as a single target

If A( i, w) = 0 and B( i, w) - 1, target unit i is available for fire as an aggregate target
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For convenience in notation, define the following values for the encoding of the algorithm:

PSINGLE( i, w) = peng.ge( iI w)

PAGGR( i, w) = peengage( iI w) + Pegage( ij w)

Section III- A PROGRAM FOR MONTE CARLO Pround ESTIMATION

A simple SIMSCRIPT program was written to generate Monte Carlo estimates of Proud( wl a1 ) for

the 10 target units, 3 firing units and two weapon types given in Section I. This program is not

intended as an example of an efficient program for generating these estimates; rather it serves as an

example of an implementation of the algorithm in Section II. Implementation of the NEMESIS

research will entail writing a more efficient program, operating with the same logic, to generate the

estimates.

The Example Logic

The various data developed in the previous sections were read into the code. The single targets

were defined for i = 1, ... , 10 and the aggregate targets were defined for i = 11, ... , 20 where, for

example, target 14 was the aggregate pair formed by target unit #4 and its pair (in this case, target

unit #3). The fire preference matrix and the range factor matrix were combined to form a single

matrix FefREF(I,J) where I = target unit and J = firing unit. For aggregate targets, the fire

preference was equal to the product of the preferences for both target pairs. Thus, an aggregate target

pair could only be fired upon by a firing unit if both of the target units were on the firing preference list

for the firing unit. The fire priority for aggregate targets was assigned as the maximum of the priority

for either of the aggregated targets. In one case (target unit #9), the aggregate pair depends upon the

weapon type involved. Rather than establishing a 2-dimensional priority (unit by weapon type), I used

a priority equal to the maximum of the first unit and the minimum of either of the second

(aggregated) units selected by weapon (see line 58 of the code).

The output value was P,,..d( wI ai ) for single targets and Pro..d( wI a2 ) for (ij) aggregate target

pairs. This probability represents the probability that a round of type w is available for assignment to

the target i or ij, given that neither unit i or j have been allocated a weapon previously and that the

target has a firing unit of the appropriate type that can engage the target (the fire preference is equal

to 1). It is developed separately for single vs aggregate targets and incorporates the range factor

consideration.
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Three runs were made for illustration. The first run had only 1 weapon available per firing unit.

The second run had 2 weapons available per firing unit, and the third run had 4 weapons available for

firing units 1 and 3 with 2 weapons for firing unit 2. The Proind values are higher than might be

expected, since the PSINGLE and PAGGR values are so low (since they are low, there were often only

one or two units that were available for engagement per replication, thus a unit available for

engagement generally had a weapon available in each replication).

SIMSCRIPT Code used to Generate Example

1 PREAMBLE
2 NORMALLY MODE IS REAL
3 END

I MAIN
2 DEFINE PSINGLE,PAGGR AS REAL, 2-DIMENSIONAL ARRAYS
3 DEFINE A,B,CA,CB,PROUND,CROUND,IPAIR,FPREF AS INTEGER, 2-DIMENSIONAL

ARRAYS
4 DEFINE PRI,ENGAGE AS INTEGER, 1-DIMENSIONAL ARRAYS
5 DEFINE I,J,K,L,NW1,NW2,NW3,N,W AS INTEGER VARIABLES
6 RESERVE PSINGLE(*,*) AS 10 BY 2
7 RESERVE PAGGR(*,*) AS 10 BY 2
8 RESERVE A(*,*) AS 10 BY 2
9 RESERVE B(*,*) AS 10 BY 2
10 RESERVE CA(*,*) AS 10 BY 2
11 RESERVE CB(*,*) AS 10 BY 2
12 RESERVE PROUND(*,*) AS 20 BY 2
13 RESERVE CROUND(*,*) AS 20 BY 2
14 RESERVE IPAIR(*,*) AS 10 BY 2
15 RESERVE PRI(*) AS 20
16 RESERVE FPREF(*,*) AS 20 BY 3
17 RESERVE ENGAGE(*) AS 10
18 FORW= 1TO2DO
19 FORI= 1TO 10DO
20 READ PSINGLE(I,W)
21 LOOP
22 LOOP
23 FORW= 1TO2DO
24 FORI= 1TO 10DO
25 READ PAGGR(I,W)
26 LOOP
27 LOOP
28 FORW= I TO2DO
29 PRINT 1 LINE WITH W THUS

WEAPON # **:
31 FORI= 1TO 10DO
32 READ IPAIR(I,W)
33 PRINT 1 LINE WITH I,W,PSINGLE(I,W), IPAIR(I,W), I,W,PAGGR(I,W) THUS

PSINGLE(**,*) = .. *** FOR J = **, PAGGR(**,*) =
35 LOOP
36 LOOP
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37 FOR J =1TO 3DO
38 FORI = ITO 10DO
39 READ FPREF(I,J)
40 LOOP
41 LOOP
42 FOR I =1TOL10DO
43 FORJ = 1TO 2DO
44 LET FPREF(10+I,J) =FPREF(I,J) *FPREF(IPAIR(I,l),J)

45 LOOP
46 LET FPREF(1O±I,3) = FPREF(I,3) * FPREF(IPAIR(I,2),3)
47 PRINT I LINE WITH I,FPREF(I,l), I,FPREF(I,2), I,FPREF(I,3)'rHUS

FPREF(**,l) = * FPREF(**,2) = * FPREF(**,3) =*

49 LOOP
50 LET FPREF(20,3) = 0 "CORRECTS FOR FACT THAT WEAPON 10 HAS NO

AGGREGATE PAIR
51 FOR I =11TO 20DO
52 PRINT 1 LINE WITH I,IPAIR(I-10,1),FPREF(I,1), I,IPAIR(I-10,I),FPREF(I,2),
53 I,IPAIR(I-10,2),FPREF(I,3) THUS

FPREF(**,**,1) = * FPREF(**,**,2) =* FPREF(**,**,3) =*

55 LOOP
56 FOR I =1TO 10DO
57 READ PRI(I)
58 LET PRI(10+I) = MAX.F( PRI(I), MiN.F(PRI(IPAIR(I,1)),PRI(IPAIR(I,2)))
59 PRINT 1 LINE WITH I,PRI(I),1+10,PRI(I+10) THUS

PRI(**) = * PRI(**) =*

61 LOOP
62 READ NW1
63 READ NW2
64 READ NW3
65 READ N
66 PRINT 4 LINES WITH NW1, NW2, NW3, N THUS

WEAPONS AVAILABLE:
1 KT, FIRE UNIT 1 : ** 1 KT, FIRE UNIT 2: **10 KT, FIRE UNIT 3: *

NUMBER OF REPLICATIONS:

71 LET NWlT =NW1
72 LET NW2T = NW2
73 LET NW3T = NW3
74 FORI=1ITO1IODO
75 FORW = ITO 2DO
76 LET A(I,W) = 0
77 LET B(I,W) = 0
78 LET CA(I,W) = 0
79 LET CB(I,W) = 0
80 LOOP
81 LET ENGAGE(I) = 0
82 LOOP
83 FORK= ITON DO
84 FOR[= ITO IODO
85 FOR W ITO 2DO
86 LET U =RANDOM.F(1)

87 IF U < PSINGLE(I,W) + PAGGR(I,W)
88 LET B(I,W) = 1
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89 IF U < PSINGLE(I,W)
90 LET CA(I,W) = CA(I,W) + 1
91 LET A(I,W) = 1
92 ELSE LET CB(I,W) = CB(I,W) + 1
93 ALWAYS
94 ALWAYS
95 LOOP
96 LOOP
97 FORL= 1TO3DO
98
99 " AGGREGATE TARGETS I = 11,20

100
101 FOR I = 1 TO 10 DO
102 IF PRI(I+10) NE L GO TO NEXTI ALWAYS
103 IF A(I,!) = 0 AND B(I,1) > 0 "AGGREGATE TARGET
104 IF FPREF(I+10,1) = 1 AND ENGAGE(I) = 0
105 LET CROUND(I+10,1) = CROUND(I+10,1) + 1
106 IF NWlT > 0
107 LET PROUND(I+10,1) = PROUND(I+10,1) + 1
108 LET ENGAGE(I) = 1
109 LET ENGAGE( IPAIR(I,1) ) = 1
110 LET NW1T = NWlT - 1
111 "PRINT 1 LINE WITH K,L,I,A(I,1),B(I,1),NW1T,PROUND(I+10,1) THUS
112 "REP=**** PRI=* I=** W=1 A=*** B=*** NWI=*** PROUND=***
113 ALWAYS "NWlT
114 GO TO NEXTI
115 ELSE IF FPREF(I+10,2) = 1 AND ENGAGE(I) = 0
116 LET CROUND(I+10,1) = CROUND(I+10,1) + 1
117 IF NW2T > 0
118 LET PROUND(I+10,1) = PROUND(I+10,1) + 1
119 LET ENGAGE(I) = 1
120 LET ENGAGE( IPAIR(I,1) ) = 1
121 LET NW2T = NW2T - 1
122 "PRINT 1 LINE WITH K,L,I,A(I,1),B(I,1),NW2T,PROUND(I+10,1) THUS
123 "REP=**** PRI=* I=** W=1 A=*** B=*** NW2=*** PROUND=***
124 ALWAYS "NW2T
125 GO TO NEXTI
126 ALWAYS "FPREF1 OR 2
127 ALWAYS "A=0, B(I,1)=I
128 IF A(I,2) = 0 AND B(I,2) > 0 AND FPREF(I+10,3) = 1 AND ENGAGE(I) = 0
129 LET CROUND(I+10,2) = CROUND(I+10,2) + 1
130 IF NW3T > 0
131 LET PROUND(I+10,2) = PROUND(I+10,2) + 1
132 LET ENGAGE(I) = 1
133 LET ENGAGE( IPAIR(I,2) ) = 1
134 LET NW3T = NW3T - 1
135 "PRINT 1 LINE WITH K,L,I,A(I,2),B(I,2),NW3T,PROUND(I+10,2) THUS
136 "REP=**** PRI=* I=** W=2 A=*** B=*** NW3=*** PROUND=***
137 ALWAYS "NW3T
138 GO TO NEXTI
139 ALWAYS "A=0, B(I,2)=I AND FPREF3
140 'NEXTI' LOOP "ON UNIT I AGGREGATE TARGET
141
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142 " SINGLE TARGETS I = 1, 10
143 "

144 FOR I = 1 TO 10 DO
145 IF PRI(I) NE L GO TO NEXTII ALWAYS
146 IF A(II) = 1 "SINGLE TARGET
147 IF FPREF(I,l) = 1 AND ENGAGE(I) = 0
148 LET CROUND(I,1) = CROUND(I,1) + 1
149 IF NWIT > 0
150 LET PROUND(I,1) = PROUND(I,1) + 1
151 LET NW1T = NW1T - 1
152 "PRINT 1 LINE WITH K,L,I,A(I,1),B(I,1),NW1T,PROUND(I,1) THUS
153 "REP=**** PRI=* I=** W=l A=*** B=*** NW1=*** PROUND=***
154 ALWAYS "NW1T
155 GO TO NEXTII
156 ELSE IF FPREF(I,2) = 1 AND ENGAGE(I) = 0
157 LET CROUND(I,1) = CROUND(I,1) + 1
158 IF NW2T > 0
159 LET PROUND(I,1) = PROUND(I,I) + 1
160 LET NW2T = NW2T - 1
161 "PRINT 1 LINE WITH K,L,I,A(I,1),B(I,1),NW2T,PROUND(I,1) THUS
162 "REP=**** PRI=* I=** W=I A=*** B=*** NW2=*** PROUND=***
163 ALWAYS "NW2T
164 GO TO NEXTII
165 ALWAYS "FPREF1 OR 2
166 ALWAYS "A(I,1) = 1
167 IF A(I,2) = 1 AND FPREF(I,3) = 1 AND ENGAGE(I) = 0
168 LET CROUND(I,2) = CROUND(I,2) + 1
169 IF NW3T > 0
170 LET PROUND(1,2) = PROUND(I,2) + 1
171 LET NW3T = NW3T - 1
172 "PRINT 1 LINE WITH K,L,I,A(I,2),B(I,2),NW3T,PROUND(I,2) THUS
173 "REP=**** PRI=* I=** W=2 A=*** B=*** NW3=*** PROUND=***
174 ALWAYS "NW3T
175 GO TO NEXTII
176 ALWAYS "A(I,2) AND FPREF3
177 'NEXTII' LOOP "ON UNIT I SINGLE TARGET
178 LOOP "ON PRIORITY L
179 FOR I = 1 TO 10 DO "REINITIALIZE CONTROL VARS FOR NEXT REP
180 FORW=1TO2DO
181 LET A(I,W) = 0
182 LET B(I,W) = 0
183 LET ENGAGE(I) = 0
184 LOOP
185 LOOP
186 LET NWIT = NW1 "REINITIALIZE ROUNDS FOR NEXT REP
187 LET NW2T = NW2
188 LET NW3T = NW3
189 LOOP "ON K = I TO N
190 PRINT 1 LINE WITH N THUS

FOR ***** REPLICATIONS, AVERAGES ARE:
192 FORI= ITO 10DO
193 PRINT I LINE WITH I,CA(I,1)/N,I,PSINGLE(I,1),I,CA(I,2)/N,I,PSINGLE(I,2) THUS

A(**,I) = *.*** PA(**,2) = ,.*** A(**,2) = ,.*** PA(**,2) =
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195 PRINT 1 LINE WITH I,CB(I,1)/N,I,PAGGR(I,1),I,CB(I,2)/N,I,PAGGR(I,2) THUS
B(**,I) = *.*** PB(**,1) - ,.*** B(**,2) - ,.*** PB(**,2) -

197 LOOP
198 PRINT I LINE THUS

SINGLE TARGETS:
200 FOR I=1TO 10DO
201 FORW= 1TO2 DO
202 IF CROUND(I,W) = 0
203 IF PROUND(I,W) NE 0
204 PRINT 1 LINE WITH I,W,PROUND(I,W), I,W,CROUND(I,W) THUS
--- ERROR--- PROUND(**,*)= *** CROUND(**,*)= ***

206 ALWAYS
207 LET CROUND(I,W) = 1
208 ALWAYS
209 LOOP
210 PRINT 1 LINE WITH I,PROUND(I,1)/CROUND(I,1),I,PROUND(I,2)/CROUND(I,2)

THUS
PROUND(**,I) = *.*** PROUND(**,2) =

212 LOOP
213 PRINT 2 LINES THUS

AGGREGATE TARGETS:
216 FORI= 1TO 10 DO
217 FORW= 1TO2DO
218 IF CROUND(I+10,W) = 0
219 IF PROUND(I+I0,W) NE 0
220 PRINT 1 LINE WITH I+10,W,PROUND(I+10,W), I+10,W,CROUND(I+10,W) THUS
-ERROR- PROUND(**,*)= *** CROUND(**,*)= ***

222 ALWAYS
223 LET CROUND(I+10,W) = 1
224 ALWAYS
225 LOOP
226 PRINT 1 LINE WITH I,IPAIR(I,1),PROUND(I+10,1)/CROUND(I+10,1),
227 I,IPAIR(I,2),PROUND(I+10,2)/CROUND(I+10,2) THUS

PROUND(**,**) = *.*** PROUND(**,**) =
229 LOOP
230 END

Input Data

WEAPON # 1:

PSINGLE( 1,1) = .129 FOR J = 2, PAGGR( 1,1) = .048
PSINGLE( 2,1) = .263 FOR J = 3, PAGGR( 2,1) = .108
PSINGLE( 3,1) = .353 FOR J = 2, PAGGR(3,1) = .108
PSINGLE( 4,1) = .218 FOR J = 3, PAGGR( 4,1) = .114
PSINGLE( 5,1) = .326 FOR J = 6, PAGGR(5,1) = .286
PSINGLE( 6,1) = .448 FOR J = 7, PAGGR( 6,1) = .119
PSINGLE( 7,1) = .388 FOR J = 6, PAGGR( 7,1) = .119
PSINGLE( 8,1) = .128 FOR J = 7, PAGGR(8,1) = .044
PSINGLE( 9,1) = .234 FOR J = 3, PAGGR( 9,1) = .038
PSINGLE(10,1) = .200 FOR J = 10, PAGGR(10,1) = 0.
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WEAPON # 2

PSINGLE( 1,2) = .080 FOR J = 2, PAGGR( 1,2) = .045
PSINGLE( 2,2) = .164 FOR J = 3, PAGGR( 2,2) = .132
PSINGLE( 3,2) = .323 FOR J = 2, PAGGR( 3,2) = .132
PSINGLE( 4,2) = .135 FOR J = 3, PAGGR( 4,2) = .142
PSINGLE( 5,2) = .195 FOR J = 6, PAGGR( 5,2) = .242
PSINGLE( 6,2) = .313 FOR J = 7, PAGGR( 6,2) = .210
PSINGLE( 7,2) = .274 FOR J = 6, PAGGR( 7,2) = .210
PSINGLE( 8,2) = .052 FOR J = 7, PAGGR( 8,2) = .072
PSINGLE( 9,2) = .169 FOR J = 6, PAGGR( 9,2) = .045
PSINGLE(10,2) = .200 FOR J = 10, PAGGR(10,2) = 0.

FPREF( 1,1) = 1 FPREF( 1,2) = 1 FPREF( 1,3) = 0
FPREF( 2,1) = I FPREF( 2,2) = I FPREF( 2,3) = 0
FPREF( 3,1) = 0 FPREF( 3,2) = I FPREF( 3,3) = 0
FPREF( 4,1) = I FPREF( 4,2) = 0 FPREF( 4,3) = 1
FPREF( 5,1) = 1 FPREF( 5,2) = 1 FPREF( 5,3) = 1
FPREF( 6,1) = 0 FPREF( 6,2) = 1 FPREF( 6,3) = 1
FPREF( 7,1) = 0 FPREF( 7,2) = 0 FPREF( 7,3) = 1
FPREF( 8,1) = 1 FPREF( 8,2) = 1 FPREF( 8,3) = 1
FPREF( 9,1) = 0 FPREF( 9,2) = 1 FPREF( 9,3) = 1
FPREF(10,1) = 0 FPREF(10,2) = 0 FPREF(10,3) = 1

FPREF(11, 2,1) = 1 FPREF(11, 2,2) = 1 FPREF(11, 2,3) = 0
FPREF(12, 3,1) = 0 FPREF(12, 3,2) = 1 FPREF(12, 3,3) = 0
FPREF(13, 2,1) = 0 FPREF(13, 2,2) = 1 FPREF(13, 2,3) = 0
FPREF(14, 3,1) = 0 FPREF(14, 3,2) = 0 FPREF(14, 3,3) = 0
FPREF(15, 6,1) = 0 FPREF(15, 6,2) = 1 FPREF(15, 6,3) = 1
FPREF(16, 7,1) = 0 FPREF(16, 7,2) = 0 FPREF(16, 7,3) = 1
FPREF(17, 6,1) = 0 FPREF(17, 6,2) = 0 FPREF(17, 6,3) = I
FPREF(18, 7,1) = 0 FPREF(18, 7,2) = 0 FPREF(18, 7,3) = 1
FPREF(19, 3,1) = 0 FPREF(19, 3,2) = I FPREF(19, 6,3) = I
FPREF(20,10,1) = 0 FPREF(20,10,2) = 0 FPREF(20,10,3) = 0

PRI( 1) = 3 PRI(11) = 3
PRI(2) = 3 PRI(12) = 3
PRI(3) = 3 PRI(13) = 3
PRI( 4) = 2 PRI(14) = 3
PRI( 5) = 2 PRI(15) = 2
PRI( 6) = 2 PRI(16) = 2
PRI( 7) = 2 PRI(17) = 2
PRI(8) = 2 PRI(18) = 2
PRI( 9) = 2 PRI(19) = 2
PRI(10) = 1 PRI(20) = 1
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Output

FOR 5000 REPLICATIONS, AVERAGES ARE: "SHOWN TO ESTABLISH HOW CLOSE THE
REPLICATIONS ARE TO THE THEORETICAL RESULT

A( 1,1) = .130 PA( 1,2) = .129 A( 1,2) = .076 PA( 1,2) = .080
B( 1,1) = .052 PB( 1,1) = .048 B( 1,2) = .045 PB( 1,2) = .045
A( 2,1) = .255 PA( 2,2) = .263 A( 2,2) = .170 PA( 2,2) = .164
B( 2,1) = .107 PB( 2,1) = .108 B( 2,2) = .135 PB( 2,2) = .132
A( 3,1) = .359 PA( 3,2) = .353 A( 3,2) = .305 PA( 3,2) = .323
B( 3,1) = .113 PB( 3,1) = .108 B( 3,2) = .140 PB( 3,2) = .132
A( 4,1) = .217 PA( 4,2) = .218 A( 4,2) = .139 PA( 4,2) = .135
B( 4,1) = .115 PB( 4,1) = .114 B( 4,2) = .138 PB( 4,2) = .142
A( 5,1) = .325 PA( 5,2) = .326 A( 5,2) = .191 PA( 5,2) = .195
B( 5,1) = .290 PB( 5,1) = .286 B( 5,2) = .247 PB( 5,2) = .242
A( 6,1) = .448 PA( 6,2) = .448 A( 6,2) = .317 PA( 6,2) = .313
B( 6,1) = .121 PB( 6,1) = .119 B( 6,2) = .206 PB( 6,2) = .210
A( 7,1) = .390 PA( 7,2) = .388 A( 7,2) = .266 PA( 7,2) = .274
B( 7,1) = .116 PB( 7,1) = .119 B( 7,2) = .210 PB( 7,2) = .210
A( 8,1) = .126 PA( 8,2) = .128 A( 8,2) = .052 PA( 8,2) = .052
B( 8,1) = .042 PB( 8,1) = .044 B( 8,2) = .076 PB( 8,2) = .072
A( 9,1) = .242 PA( 9,2) = .234 A( 9,2) = .162 PA( 9,2) = .169
B( 9,1) = .031 PB( 9,1) = .038 B( 9,2) = .043 PB( 9,2) = .045
A(10,1) = .201 PA(10,2) = .200 A(10,2) = .201 PA(10,2) = .200
B(10,1) = 0. PB(10,1) = 0. B(10,2) = 0. PB(10,2) = 0.

(1) Run #1

WEAPONS AVAILABLE:
1 KT, FIRE UNIT 1 : 1 1 KT, FIRE UNIT 2: 1 10 KT, FIRE UNIT 3: 1

SINGLE TARGETS:
PROUND( 1,1) = .498 PROUND( 1,2) = 0.
PROUND( 2,1) = .434 PROUND( 2,2) = 0.
PROUND( 3,1) = .368 PROUND( 3,2) = 0.
PROUND( 4,1) = 1.000 PROUND( 4,2) = .384
PROUND( 5,1) = .807 PROUND( 5,2) = .377
PROUND( 6,1) = .974 PROUND( 6,2) = .454
PROUND( 7,1) = 0. PROUND( 7,2) = .420
PROUND( 8,1) = .565 PROUND( 8,2) = .199
PROUND( 9,1) = .528 PROUND( 9,2) = .176
PROUND(10,1) = 0. PROUND(10.2) = 1.000

AGGREGATE TARGETS:
PROUND( 1, 2) = .544 PROUND( 1, 2) = 0.
PROUND( 2, 3) = .368 PROUND( 2, 3) = 0.
PROUND( 3, 2) = .369 PROUND( 3, 2) = 0.
PROUND( 4, 3) = 0. PROUND( 4, 3) = 0.
PROUND( 5, 6) = 1.000 PROUND( 5, 6) = .788
PROUND( 6, 7) = 0. PROUND( 6, 7) = .790
PROUND( 7, 6) = 0. PROUND( 7, 6) = .629
PROUND( 8, 7) = 0. PROUND( 8, 7) = .454
PROUND( 9, 3) = .684 PROUND( 9, 6) = .430
PROUND(10,10) = 0. PROUND(10,10) = 0.
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(2) Run #2

WEAPONS AVAILABLE:
1 KT, FIREUNIT 1 : 2 1 KT, FIREUNIT 9 : 2 10KT, FIRE UNIT3: 2

SINGLE TARGETS:

PROUND( 1,1) = .920 PROUND( 1,2) = 0.
PROUND( 2,1) = .853 PROIND( 2,2) = 0.
PROUND( 3,1) = .878 PPOUND( 3,2) = 0.
PROUND( 4,1) = 1.000 PROUND( 4,2) = .835
PROUND( 5,1) = 1.000 PROUND( 5,2) = .850
PROUND( 6,1) = 1.000 PROUND( 6,2) = .895
PROUNr' 7,1) = 0. PROUND( 7,2) = .854
PROUT.D( 8,1) = .954 PROUND( 8,2) = .665
PROUND( 9,1) = 1.000 PROUND( 9,2) = .632
PROUND(10,1) = 0. PROUND(10,2) = 1.000

AGGREGATE TARGETS:
PROUND( 1, 2) = .873 PROUND( 1, 2) = 0.
PROUND( 2, 3) = .860 PROUND( 2, 3) = 0.
PROUND( 3, 2) = .876 PROUND( 3, 2) = 0.
PROUND( 4, 3) 0. PROUND( 4, 3) = 0.
PROUND( 5, 6) = 1.000 PROUND( 5, 6) = 1.000
PROUND( 6, 7) = 0. PROUND( 6, 7) = 1.000
PROUND( 7, 6) = 0. PRO JND( 7, 6) = .950
PROUND( 8, 7) = 0. PROUND( 8, 7) = .887
PROUND( 9, 3) = 1.000 PROUND( 9, 6) = .821
PROUND(10,10) = 0. PROUND(10,10) = 0.

(3) Run #3

WEAPONS AVAILABLE:
1 KT, FIRE UNIT 1: 4 1 KT, FIRE UNIT2: 2 10KT, FIRE UNIT3: 4

SINGLE TARGETS:

PROUND( 1,1) = 1.000 PROUND( 1,2) = 0.
PROUND( 2,1) = .998 PROUND( 2,2) = 0.
PROUND( 3,1) = .878 PROUND( 3,2) = 0.
PROUND( 4,1) = 1.000 PROUND( 4,2) = 1.000
PROUND( 5,1) = 1.000 PROUND( 5,2) = 1.000
PROUND( 6,1) = 1.000 PROUND( 6,2) = .997
PROUND( 7,1) = 0. PROUND( 7,2) = .999
PROUND( 8,1) = 1.000 PROUND( 8,2) = .986
PROUND( 9,1) = 1.000 PROUND( 9,2) = .986
PROUND(10,1) = 0. PROUND(10,2) = 1.000
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AGGREGATE TARGETS:

PROUND( 1, 2) = 1.000 PROUND( 1, 2) = 0.
PROUND( 2, 3) = .860 PROUND( 2, 3) = 0.
PROUND( 3, 2) = .876 PROUND( 3, 2) = 0.
PROUND( 4, 3) = 0. PROUND( 4, 3) = 0.
PROUND( 5, 6) = 1.000 PROUND( 5, 6) = 1.000
PROUND( 6, 7) = 0. PROUND( 6, 7) = 1.000
PROUND( 7, 6) = 0. PROUND( 7, 6) = 1.000
PROUND( 8, 7) = 0. PROUND( 8, 7) = 1.000
PROUND( 9, 3) = 1.000 PROUND( 9, 6) = 1.GJ0
PROUND(10,10) = 0. PROUND(10,10) = 0.

Section IV - CALCULATING PROBABILITIES OF ENGAGEMENT AND DEFEAT

Probabilities of Engagement

Recall the following definitions:

Pengage( I, s, w) = Pavail( I) . P3 h;ft( i w, aj, avgi) T aggr( iI w, ai ) Prownd( wI ai)

= Pengage( I, sI w) " Pround( w ai )

Pengage( iJ, w) = Pavail( ') • Pno ,hif( iI w, at, aggi ) • paggr( I[ w, a i ) •Proud( wI ai

-= Pengage( ,- I w) • Pround( wI ai )

Pengage( 1, W) = Pengage( iI W) • Pround( w I ai )
Pengage( 'I, s. w) = Pavail( i) Pavail(j) " PshiB( i[ w. aij, aggi• Paggr( w, aij Prouna( w a,,

= Peingage( ijI sI w) . Prood( wI a)ij

Pengage( ii,-, w) = Pavail( I) ' Pavail(J) " Pno ,hift( zjI w, aij, aggij ) Paggr( ijl w, aij )

. pround( wI aij )

= Pengage( Zj' WIW) " Pround( w I a )

Pengaye( ij, W) = Pengage( II w) ' Pround( wI aij )

In this case, the values PROUND( I, W ) from the Monte Carlo estimation equal Prou,,d( wI a ) am'

the values PROUND( I, J, W ) from the Monte Carlo estimation equal Proud( wI aj,)

Run #1

Unit 1 2 3 4 5 6 7 8 9 10

Pngage( IJ, w 1 ) .043 .076 .086 .109 .175 .272 0 .054 .069 0

Pngage( 1, S. W) .021 .038 .043 .109 .088 .164 0 .018 .055 0

pe,,gage( ,-', w2 ) 0 0 0 .023 .066 .032 .029 .006 .005 .180

Pe-,ag-ne( 1.s, w2 ) 0 0 0 .020 .041 .022 .021 .002 .00? .020
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Unit 1 2 3 4 5 6 7 8 9 10

peuigage( ij,-, w1 ) .013 .026 .027 0 .176 0 0 0 .016 0

pengage( ij, s,w1 ) .013 .013 .013 0 .110 0 0 0 .008 0

pengage( 'j,§, W2 ) 0 0 0 0 .087 .077 .062 .015 .006 0

Pegage( ij, s, w2 ) 0 0 0 0 .110 .098 .098 .032 .015 0

Run #2

Unit 1 2 3 4 5 6 7 8 9 10

pengage( i, ,wV) .079 .149 .206 .109 .217 .280 0 .092 .130 0

pe,ngage( i,s, w,) .040 .075 .104 .109 .109 .168 0 .031 .104 0

Pengage( i,',w1 ) 0 0 0 .051 .150 .063 .060 .021 .017 .180

pengage( , S, W2 ) 0 0 0 .044 .094 .044 .042 .008 .007 .020

Unit 1 2 3 4 5 6 7 8 9 10

Pengagz lj,-, w)) .021 .062 .063 0 .176 0 0 0 .023 0

pengage( ij, s, w1 ) .023 .031 .032 0 .110 0 0 0 .011 0

pe,gage( ij,7, w)) 0 0 0 0 .110 .098 .093 .028 .012 0

pengage( ij, S, w2 ) 0 0 0 0 .132 .112 .106 .035 .025 0

Run #3

Unit 1 2 3 4 5 6 7 8 9 10

pengage( i, w) .086 .175 .206 .109 .217 .280 0 .096 .130 0

pengage( i,8,W) .043 .088 .104 .109 .109 .168 0 .032 .104 0

pengage( Of,w1 ) 0 0 0 .061 .176 .070 .070 .032 .027 .180

pnqage( 1, s, w2 ) 0 0 0 .053 .110 .049 .049 .012 .011 .020

Unit 1 2 3 4 5 6 7 8 9 10

p,. gage( ij,'7, U I) .024 .062 .-63 0 .176 0 0 0 .023 0

pengage( 11, s, w, ) .024 .031 .032 0 .110 0 0 0 .011 0

P,.ngage( I)J, , w) 0 0 0 0 .110 .098 .098 .032 .015 0

pegagc( 1., s, W2 ) 0 0 0 0 .132 .112 .112 .040 .030 0
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Probabilities of Defeat

Recall the following definitions:

Pdjfa(j, w)

7I-- Pdeat( i w, ai, s, afg i ) pengage( a, s, w ) + Pdefeat('i w, ai, s, ag i ) • Pengage( i, , w )

+ Pdefeat(i , aij, s, agg21) Pe,,gage( ii, s, w ) + Pdefcat( I W, aij, -, aggij ) Pengsge( ij,-, w

Pdefeat() = F pdcfeat(, w)

Suppose we have the following conditional probabilities of defeat:

Unit 1 2 3 4 5 6 7 8 9 10

Pdefeat( iI w1,- ..... 75 .75 .75 .65 .65 .65 .65 .70 .70 -

Pdtfeat( 'II w 1 s .40 .50 .60 .35 .40 .45 .60 .35 .50 -

Pdefrat( 'i w2 1 . . . . . 90 .90 .90 .80 .80 .80 .80 .85 .85 1.0

Pdefeat( I W2, S ... 55 .40 .50 .40 .45 .55 .70 .30 .55 .60

Unit 1 2 3 4 5 6 7 8 9 10

Pdefeat( iJ Wl' .... 60 .55 .55 .50 .55 .45 .45 .55 .50 -

Pdeaint( ijI w1, s... 25 .30 .30 .20 .25 .35 .35 .20 .25 -

Pdeeat( 'i w 2 1 §. .70 .65 .65 .60 .70 .65 .65 .70 .70 -

Pdecat ( i I W2i S .... 15 .25 .25 .25 .35 .25 .25 .40 .35 -

Thus for run #1,

Pdefeat 1, wI) = (.043)(.75) + (.021)(.40) + (.013)(.60) + (.013)(.25) = .052, etc.

Unit 1 2 3 4 5 6 7 8 9 10

Pdefeat( i, wt) Run 1 .056 .096 .110 .109 .295 .251 0 .044 .088 0

Pdefeat( a, w,) Run 2 .099 .196 .268 .109 .331 .258 0 .075 .161 0

Pdefeat( i, w1) Run 3 .109 .222 .268 .109 .331 .258 0 .078 .161 0

Pdefeag( i, w2 ) Run 1 0 0 0 .026 .169 .110 .096 .023 .014 .192

Pdefeat( a, w2 ) Run 2 0 0 0 .058 .290 .166 .164 .054 .035 .192

Pdefeaf( " w2 ) Run 3 0 0 0 .070 .319 .175 .182 .069 .050 .192
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This yields the following values for Pdefeag( )

Unit 1 2 3 4 5 6 7 8 9 10

Pdja(i) Run 1 .056 .096 .110 .135 .464 .361 .096 .067 .102 .192

Pdefeai( i) Run 2 .099 .196 .268 .167 .621 .424 .164 .129 .196 .192

pdefag( i) Run 3 .109 .222 .268 .179 .650 .433 .182 .147 .211 .192
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